Если воспользоваться терминологией Пригожина, то можно сказать, что все системы содержат подсистемы, которые непрестанно флуктуируют. Иногда отдельная флуктуация или комбинация флуктуации может стать (в результате положительной обратной связи) настолько сильной, что существовавшая прежде организация не выдерживает и разрушается. В этот переломный момент (который авторы книги называют особой точкой или точкой бифуркации) принципиально невозможно предсказать, в каком направлении будет происходить дальнейшее развитие: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и более высокий уровень упорядоченности или организации, который авторы называют диссипативной структурой. (Физические или химические структуры такого рода получили название диссипативных потому, что для их поддержания требуется больше энергии, чем для поддержания более простых структур, на смену которым они приходят.)
Один из ключевых моментов в острых дискуссиях, развернувшихся вокруг понятия диссипативной структуры, связан с тем, что Пригожин подчеркивает возможность спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации.
Чтобы понять суть этой чрезвычайно плодотворной идеи, необходимо прежде всего провести различие между системами равновесными, слабо неравновесными и сильно неравновесными.
Представим себе некое племя, находящееся на чрезвычайно низкой ступени развития. Если уровни рождаемости и смертности сбалансированы, то численность племени остается неизменной. Располагая достаточно обильными источниками пищи и других ресурсов, такое племя входит в качестве неотъемлемой составной части в локальную систему экологического равновесия. Теперь допустим, что уровень рождаемости повысился. Небольшое преобладание рождаемости над смертностью не оказало бы заметного влияния на судьбу племени. Вся система перешла бы в состояние, близкое к равновесному.
Но представим себе, что уровень рождаемости резко возрос. Тогда система оказалась бы сдвинутой в состояние, далекое от равновесия, и на первый план выступили бы нелинейные соотношения. Находясь в таком состоянии, системы ведут себя весьма необычно. Они становятся чрезвычайно чувствительными к внешним воздействиям. Слабые сигналы на входе системы могут порождать значительные отклики и иногда приводить. к неожиданным эффектам. Система в целом может перестраиваться так, что ее поведение кажется нам непредсказуемым.
Многочисленные примеры такого рода самоорганизации читатель найдет на страницах книги Пригожина и Стенгерс. Молекулярный механизм отвода тепла в подогреваемой снизу жидкости при переходе градиента температур через некоторый порог внезапно сменяется конвекцией, существенно перестраивающей движение жидкости, и миллионы молекул, как по команде, образуют шестиугольные ячейки.
Еще более впечатляющее зрелище представляют собой описанные Пригожиным и Стенгерс «химические часы». Представим себе миллион белых шариков для игры в настольный теннис, перемешанных случайным образом с миллионом таких же черных шариков, хаотически прыгающих в огромном ящике, в стенке которого имеется стеклянное окошко. Глядя в него, наблюдатель будет в основном видеть серую массу, но время от времени (в зависимости от распределения шариков вблизи окошка в момент наблюдения) масса за стеклом будет казаться ему то черной, то белой.
Представьте себе теперь, что масса шариков за стеклом через равные промежутки времени («как по часам») попеременно то белеет, то чернеет.
Почему все черные и все белые шарики внезапно организуются так, чтобы попеременно уступать место у окошка шарикам другого цвета?
По всем правилам классической науки ничего подобного происходить не должно. Тем не менее стоит лишь отказаться от шариков для пинг-понга (приведенных лишь для большей наглядности) и обратиться к примеру с молекулами, участвующими в некоторых химических реакциях, как мы сразу же обнаружим, что такого рода самоорганизация, или упорядочение, может происходить и действительно происходит не так, как учат классическая физика и статистическая физика Больцмана.
В состояниях, далеких от равновесия, происходят и другие спонтанные, нередко весьма значительные перераспределения материи во времени и в пространстве. Если мы перейдем от одномерного пространства к двухмерному или трехмерному, то число возможных типов диссипативных структур резко возрастет, а сами структуры станут необычайно разнообразными.