Выбрать главу

Следует отметить одну очень важную особенность, которая отличает вирусы от других, более совершенных живых организмов. В момент распада молекулы вируса на две спирали, вновь уменьшается искривление микрокосмоса, и канал между физическим и эфирным уровнями вновь закрывается. Только после того, как каждая из спиралей завершает строить себе зеркальную копию, вновь атомный вес становится критическим, и открывается канал между физическим и эфирным уровнями.

У других простейших живых организмов в процессе деления спирали молекулы ДНК тоже расходятся, а потом восстанавливают себе зеркальную структуру. Но при этом, каждая из спиралей имеет свой канал между физическим и эфирным уровнями.

После завершения восстановления полной структуры, возникает сверхкритическое искривление микрокосмоса, при котором они сами начинают распадаться и материи, их составляющие, начинают тоже перетекать по каналам на эфирный уровень. По мере распада этих молекул, каналы ими создаваемые начинают уменьшаться. Активность перетекания материй между уровнями, с уменьшением величины каналов, постепенно возвращается к норме.

Но, за время сверхактивного перетекания форм материи между уровнями, концентрация формы материи G на эфирном уровне становится во много раз больше нормы и, как следствие, возникает обратное перетекание по каналам материи G с эфирного уровня на физический. При этом перетекании эфирные структуры молекул ДНК проявляются (проецируются) на физическом уровне, что создаёт благоприятные условия для восстановления полной структуры молекул ДНК на физическом уровне.

Когда система приходит к состоянию равновесия, на физическом уровне остаются две устойчивые молекулы ДНК с балансными каналами между физическим и эфирным уровнями. Понимание этого процесса очень важно для проникновения в тайну жизни на Земле. Более подробно этот механизм рассмотрим несколько позже, на примере деления клетки. А сейчас, вернёмся к этапам возникновения жизни…

Вирус с некоторыми особенностями является первым простейшим живым организмом. Как уже говорилось, вирус представляет собой молекулу РНК, окружённую белковой оболочкой. Белковая оболочка вируса отделяет молекулу РНК от внешней среды, смягчает воздействие на неё внешних факторов и создаёт максимальную устойчивость.

Эта оболочка замедляет движение через себя органических и неорганических молекул, благодаря чему, вокруг молекулы РНК создаётся свой «микроклимат». Белковая оболочка вируса является прообразом клеточной мембраны.

В ходе дальнейшей эволюции под воздействием излучений, температуры, давления, активных химических веществ возникали различные изменения, мутации структуры молекулы РНК. Изменялись её свойства, степень влияния на микропространство и на окружающую среду. Далеко не все изменения были положительными: из бесчисленного количества мутаций только одна могла стать положительной. Но, благодаря именно этим положительным изменениям, которые со временем накапливались, создавались новые качества, изменялась оболочка, окружающая молекулу РНК.

Появление нескольких слоёв оболочки создавало более устойчивую среду вокруг молекулы РНК. Изменение внешних условий всё меньше и меньше влияло на состав и состояние внутренней среды оболочки. Появление жирового слоя, защищённого, как бронёй, белковыми слоями, вокруг молекулы РНК, а позже и ДНК, свело к минимуму влияние внешней среды. И только резкие её изменения, которые разрушали оболочку, могли повлиять на её внутреннюю среду.

Это связано с тем, что жировая прослойка оболочки, обладающая гидрофобными, т. е. водоотталкивающими свойствами свела к минимуму циркуляцию веществ, а внутренняя среда приобрела устойчивость и относительную независимость от внешней среды. С этого момента развития жизни, мы можем говорить о возникновении праклетки.

Дальнейшая эволюция, как следствие хаотичных и случайных мутаций, привела к возникновению первых одноклеточных организмов. Некоторые из этих простейших одноклеточных организмов были на кремниевой основе. Но организмы на углеродной основе очень быстро их вытеснили. Структурно не гибкие и очень нежные кремниевые организмы, которые не успевали подстраиваться к быстрым изменениям внешней среды, постепенно исчезли.

Любая система стремится к состоянию максимальной устойчивости и равновесию. Влияние внешней среды на первые одноклеточные организмы приводило к частичному их разрушению, потере части органических веществ, находящихся внутри клеточных оболочек и к повреждению самих клеточных оболочек. Только система, которая могла сама возвращаться к устойчивости, восстанавливать свою структуру, могла сохраниться и продолжать эволюцию. Для этого было необходимо восполнение потерь.

Первобытный океан содержал ещё очень мало органических веществ и первым одноклеточным организмам было весьма сложно «выловить» в окружающей воде органические вещества, которые необходимы для восстановления их целостности. Вспомним, при каких условиях из неорганических молекул углерода, кислорода, азота, водорода и других возникают органические соединения…

Происходит это, когда насыщенную неорганическими молекулами и атомами воду пронизывают электрические разряды возникающие, как результат перепада статического электричества между атмосферой и поверхностью. Электрические разряды искривляют микрокосмос, что и создаёт условия для соединения атомов углерода в цепочки — органические молекулы.

Таким образом, чтобы возник синтез органических молекул, необходимо изменение мерности микрокосмоса на некоторую величину:

Δλ ≈ 0,020203236…

И чтобы первые одноклеточные организмы могли восстанавливать и сохранять свою структуру, необходим синтез простейших органических соединений внутри самих одноклеточных организмов. Возникновение синтеза органических молекул из неорганических возможно при изменении мерности микрокосмоса на величину Δλ. Никакой простейший (и даже сложный!) живой организм создать электрический разряд подобный атмосферному не в состоянии.

В ходе эволюции у простейших одноклеточных организмов возник промежуточный вариант, дающий необходимую величину Δλ. Вспомним, что каждая молекула, атом влияет, искривляет свой микрокосмос на ту или иную величину. Максимальное влияние на микрокосмос оказывают органические молекулы. Большие органические молекулы, такие, как ДНК и РНК оказывают такое влияние на микрокосмос, при котором происходит не синтез, а распад простых органических молекул.

Для синтеза органических молекул из неорганических необходимо изменение мерности микрокосмоса на величину

0 < Δλ < 0,020203236…

Такое влияние на микрокосмос оказывают средней величины органические молекулы. Казалось бы, всё очень просто… В одноклеточных организмах должны быть молекулы, примерно, на порядок меньше молекулДНК иРНК, и проблема уже решена… Но, не всё так просто.

Каждая молекула изменяет микрокосмос вокруг себя, но это изменение продолжает быть неизменным до тех пор, пока сохраняется целостность самой молекулы. Для того чтобы возник синтез органических молекул, должно возникнуть колебание мерности микрокосмоса с амплитудой:

0 < Δλ < 0,010101618…

Колебания мерности микрокосмоса должны быть, по крайней мере, периодическими, чтобы возникли нормальные условия для синтеза органических молекул. Для этого должны быть молекулы, которые бы изменялись при незначительных изменениях внешней среды и вызывали внутри одноклеточных организмов нужные колебания мерности микрокосмоса. Эти воздействия внешней среды (излучения) не должны в то же самое время разрушать сами одноклеточные организмы, но должны свободно попадать внутрь их мембран.