Выбрать главу

7. Митохондрии.

8. Эндоплазматическая сеть.

9. Хромосомы ядра.

При этом количество материи, перетекающей с физического уровня на эфирный значительно больше количества материи перетекающего с эфирного уровня на физический (см. Рис. 20 — уровни сообщающихся сосудов). По мере распада физической клетки, на эфирном уровне создаются два эфирных тела клетки потому, что каждое ядро создаёт тождественное искривление микрокосмоса и на эфирном уровне (см. Рис. 21).

При этом количество материиG, в частности, перетекающей на эфирный уровень, становится избыточным на этом уровне (см. Рис. 21 — сообщающиеся сосуды). Когда завершается распад старой физической клетки, вместо неё остаются составляющие её органические молекулы, т. е. органическое вещество — строительный материал для создания новых клеток.

Рис. 21 — при распаде физически плотной клетки формируется второе эфирное тело клетки. Причём, концентрация материиG в эфирных телах клетки в несколько раз превышает балансное соотношение для эфирного уровня.

1. Физический уровень.

2. Эфирные тела клеток.

3. Клеточные ядра.

5. Каналы ядер.

А как только прекращается интенсивное перетекание материй с физического уровня на эфирный, избыток материи G из двух сформировавшихся эфирных тел клетки по тем же каналам начинает перетекать с эфирного уровня на физический и создаёт проекцию эфирной клетки на физическом уровне (см. Рис. 21а).

Рис. 21апосле завершения распада физически плотной клетки избыточная материяG с эфирного уровня начинает перетекать на физический.

1. Физический уровень.

2. Эфирные тела клеток.

3. Ядра эфирных тел клеток.

5. Каналы ядер.

При этом в зонах проекций на физическом уровне создаётся дополнительное искривление микрокосмоса, т. е. создаются условия для синтеза молекул из массы органического вещества, накопленного в клетке перед делением и возникшего при распаде старой клетки, и расположения его в порядке, заданном эфирными телами клеток (см. Рис. 22).

Рис. 22 — из материиG на физическом уровне формируются два эфирных тела клетки, которые являются матрицами для синтеза двух новых физических клеток.

1. Физический уровень.

2. Эфирные тела клеток.

3. Ядра эфирных тел клеток.

4. Центриоли.

5. Каналы ядер.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

Аналогом этому процессу, к тому же, очень близким, является намагничивание и распределение по силовым линиям магнитного поля металлической пыли. При завершении синтеза, образуются две совершенно новые клетки по образу и подобию старой с балансным перетеканием материй между физическим и эфирным уровнями клетки (см. Рис. 23).

Рис. 23по двум эфирным матрицам синтезируется две новые физически плотные клетки, которые являются точными копиями клетки до деления.

1. Физический уровень.

2. Эфирные тела клеток.

3. Ядра эфирных тел клеток.

4. Центриоли.

5. Каналы ядер.

6. Аппарат Гольджи.

7. Митохондрии.

8. Эндоплазматическая сеть.

А теперь, вернёмся вновь к одноклеточным растениям. Возникшие в результате деления две новые клетки начинают посредством фотосинтеза накапливать органическое вещество внутри себя, а при достижении критической массы этого вещества, возникает неустойчивость данных клеток, и они сами начинают делиться. Так появляются четыре тождественные клетки, которые также делятся при накоплении органических веществ, затем уже восемь, шестнадцать, тридцать две, шестьдесят четыре и т. д.

В результате этого, начался рост количества одноклеточных организмов в геометрической прогрессии. Организмы, синтезирующие посредством фотосинтеза органическое вещество, будем в дальнейшем называть растительными организмами.

Скорость роста количества простейших растительных одноклеточных организмов — фитопланктона, определяется биологическим КПД (коэффициент полезного действия). Другими словами, он определяет, какая часть падающего солнечного света на единицу поверхности поглощается и используется для синтеза органических веществ.

У фитопланктона биологический КПД составляет порядка 2–3%. Для фотосинтеза необходим солнечный свет, проникающий на глубину не более ста метров, поэтому фитопланктон активно развивается около самой поверхности океана, постепенно создавая сплошной ковёр. Количество фитопланктона росло, а падающий на единицу поверхности океана в единицу времени солнечный свет оставался по мощности практически неизменным.

Движение поверхностных вод океана приводило к тому, что часть фитопланктона попадала на глубину, куда солнечный свет или не доставал совсем или его было недостаточно для обеспечения жизнедеятельности этих одноклеточных растений. Они не могли сами двигаться и зависели от воли волн. Большая часть фитопланктона, попавшего в такие условия гибло, образуя при своём распаде массу органических веществ. Но некоторые из них, которые смогли приспособиться, стали не синтезировать, а поглощать уже имеющиеся в окружающей их морской воде органические соединения, возникшие при гибели других, им подобных организмов.

Когда же эти организмы попадали на свет, они вновь начинали сами синтезировать органическое вещество. Такие организмы сохранились и до наших дней. Наиболее известным представителем этих одноклеточных организмов с двойными свойствами является Эвглена зелёная (см. Рис. 24).

Рис. 24 — движение поверхностных вод океана приводило к тому, что часть фитопланктона попадала на глубину, куда солнечный свет или не доставал совсем, или его было недостаточно для обеспечения жизнедеятельности этих одноклеточных растений. Они не могли сами двигаться и зависели от воли волн. Большая часть фитопланктона, попавшего в такие условия, гибло, образуя при своём распаде массу органических веществ.

Но некоторые из них, которые смогли приспособиться, стали не синтезировать, а поглощать уже имеющиеся в окружающей их морской воде органические соединения, возникшие при гибели других им подобных организмов. Когда же эти организмы попадали на свет, они вновь начинали сами синтезировать органическое вещество. Такие организмы сохранились и до наших дней. Наиболее известным представителем этих одноклеточных организмов с двойными свойствами является Эвглена зелёная.

Часть подобных организмов всё реже и реже могли попадать на свет. Свойства синтезировать органическое вещество со временем у них атрофировалось, и они стали только потребителями уже созданной другими одноклеточными растительными организмами биомассы. Так возникло два основных типа живых организмов — растительные и животные…

Каждый одноклеточный организм был зависим от случайностей в поведении окружающей среды. Приспосабливаясь к ней, одноклеточные организмы приобрели в борьбе за выживание новые качества — отростки клеточной мембраны — усики, которые позволяли им двигаться в этой среде. В какой-то момент эволюции несколько одноклеточных растений сплелись между собой своими усиками, в то время как свободные усики, своими периодическими синхронными сокращениями, приводили в движение весь комочек. Наглядным представителем подобных организмов является вольвокс (см. Рис. 25).

Рис. 25 — каждый одноклеточный организм был зависим от случайностей в поведении окружающей среды. Приспосабливаясь к ней, одноклеточные организмы приобрели в борьбе за выживание новые качества — отростки клеточной мембраны — усики, которые позволяли им двигаться в этой среде. В какой-то момент эволюции несколько одноклеточных растений сплелись между собой своими усиками, в то время как свободные усики, своими периодическими синхронными сокращениями приводили в движение весь комочек. Наглядным представителем подобных организмов является вольвокс.