Выбрать главу

nab — количество травоядных животных (а) данного вида (b), живущих на единице поверхности.

Причём:

0 < а < nао

0 < b < nоb

где:

nао — оптимальная численность популяции травоядных животных каждого вида (b) на единице поверхности, соответствующая экологическому равновесию.

nоb — оптимальное количество видов травоядных животных на единице поверхности, соответствующее экологическому равновесию.

Часть травоядных животных поедают плотоядные животные. После соответствующего расщепления и преобразования из этой части синтезируется биомасса плотоядных животных.

s c g

∫ ∫ ∫ Mabp(t) χcg ncg dsdcdg = Mcgp(t)           (3)

ooo

где:

Mcgp(t) — биомасса плотоядных животных, синтезируемая в единицу времени на единице площади.

χcg — биологический КПД плотоядных животных, показывающий, какая часть поглощённой биомассы травоядных животных преобразуется в биомассу плотоядного организма (с) каждого плотоядного вида (g).

ncg — количество плотоядных организмов (с) данного вида (g), живущих на единице поверхности.

Причём:

0 < с < nсо

0< g <nog

где:

nсо — оптимальная плотность популяции плотоядных животных каждого вида (g) на единице поверхности, соответствующая экологическому равновесию.

nog — оптимальная плотность плотоядных видов на единице поверхности, соответствующая экологическому равновесию.

Используя введённые математические обозначения (1), (2), (3) можно записать математическую модель сформировавшейся экологической системы:

 Mijp(t) + Mabp(t) + Mcgp(t) = const.          (4)

После подстановки значений слагаемых в выражение (4) получаем:

       s a b                                       s a b s a b

 Mijp(t){1+ ∫ ∫ ∫ χab nab dsdadb + ∫ ∫ ∫ χab nab [ ∫ ∫ ∫ χcg ncg dsdcdg ] dsdadb }  = const.  (5)

       ooo  ooo ooo

Если подставить в это уравнение значение Mijp(t) получаем:

     s i j

 ∫ ∫ ∫   Wsχijn(ij) [1+…+…] dsdidj = const.

     ooo

Мы получили уравнение экологической системы.

Приложение 3.

Получение формулы системы матричных пространств

Условием балансной устойчивости нашего матричного пространства является баланс между синтезируемой в матричном пространстве материей и материей, вытекающей через зоны смыкания матричных пространств. Это условие можно записать в виде:

 n1[∫∫χ(+)dmidi - 6∫∫η(-)dmidi] ≡ n2[∫∫χ(-)dmidi - 6∫∫η(+)dmidi]                   (1)

где:

n1 — количество шестилучевиков.

n2 — количество антишестилучевиков.

χ(+) — центральная область смыкания матричных пространств, через которую материи притекают в наше матричное пространство (шестилучевик).

χ(-) — центральная область смыкания матричных пространств, через которую материи вытекают из нашего матричного пространства.

η(-) — лучевые зоны смыкания с другими матричными пространствами, через которые материи вытекают из нашего матричного пространства.

η(+) — пограничные зоны смыкания с другими матричными пространствами, через которые материи притекают в наше матричное пространство.

i — число форм материй.

m — масса материй.

После простейших преобразований, получаем уравнение баланса:

 [n1∫∫χ(+)dmidi – n2∫∫ χ(-)dmidi] – 6[n1∫∫η(-)dmidi – n2∫∫η(+)dmidi] = 0           (2)

Это тождество будет выполняться, если выражения, стоящие в скобках, будут равны нулю.

 n1∫∫χ(+)dmidi – n2∫∫ χ(-)dmidi ≡ 0

 n1∫∫η(-)dmidi – n2∫∫η(+)dmidi ≡ 0

Максимальная устойчивость, к которой стремиться эта система, возможна при условии n1=n2. При других условиях, матричное пространство нестабильно, и в нём продолжаются процессы образования пространств до появления равновесного состояния.

При этом, система уравнений принимает вид:

∫ ∫χ(+)dmidi – ∫∫ χ(-)dmidi ≡ 0

∫∫ η(-)dmidi – ∫∫η(+)dmidi ≡ 0                      (3)

или:

∫ ∫[χ(+)dmidi – χ(-)dmidi] ≡ 0

∫ ∫[η(-)dmidi – η(+)dmidi] ≡ 0                     (4)