nab — количество травоядных животных (а) данного вида (b), живущих на единице поверхности.
Причём:
0 < а < nао
0 < b < nоb
где:
nао — оптимальная численность популяции травоядных животных каждого вида (b) на единице поверхности, соответствующая экологическому равновесию.
nоb — оптимальное количество видов травоядных животных на единице поверхности, соответствующее экологическому равновесию.
Часть травоядных животных поедают плотоядные животные. После соответствующего расщепления и преобразования из этой части синтезируется биомасса плотоядных животных.
s c g
∫ ∫ ∫ Mabp(t) χcg ncg dsdcdg = Mcgp(t) (3)
ooo
где:
Mcgp(t) — биомасса плотоядных животных, синтезируемая в единицу времени на единице площади.
χcg — биологический КПД плотоядных животных, показывающий, какая часть поглощённой биомассы травоядных животных преобразуется в биомассу плотоядного организма (с) каждого плотоядного вида (g).
ncg — количество плотоядных организмов (с) данного вида (g), живущих на единице поверхности.
Причём:
0 < с < nсо
0< g <nog
где:
nсо — оптимальная плотность популяции плотоядных животных каждого вида (g) на единице поверхности, соответствующая экологическому равновесию.
nog — оптимальная плотность плотоядных видов на единице поверхности, соответствующая экологическому равновесию.
Используя введённые математические обозначения (1), (2), (3) можно записать математическую модель сформировавшейся экологической системы:
Mijp(t) + Mabp(t) + Mcgp(t) = const. (4)
После подстановки значений слагаемых в выражение (4) получаем:
s a b s a b s a b
Mijp(t){1+ ∫ ∫ ∫ χab nab dsdadb + ∫ ∫ ∫ χab nab [ ∫ ∫ ∫ χcg ncg dsdcdg ] dsdadb } = const. (5)
ooo ooo ooo
Если подставить в это уравнение значение Mijp(t) получаем:
s i j
∫ ∫ ∫ Wsχijn(ij) [1+…+…] dsdidj = const.
ooo
Мы получили уравнение экологической системы.
Приложение 3.
Получение формулы системы матричных пространств
Условием балансной устойчивости нашего матричного пространства является баланс между синтезируемой в матричном пространстве материей и материей, вытекающей через зоны смыкания матричных пространств. Это условие можно записать в виде:
n1[∫∫χ(+)dmidi - 6∫∫η(-)dmidi] ≡ n2[∫∫χ(-)dmidi - 6∫∫η(+)dmidi] (1)
где:
n1 — количество шестилучевиков.
n2 — количество антишестилучевиков.
χ(+) — центральная область смыкания матричных пространств, через которую материи притекают в наше матричное пространство (шестилучевик).
χ(-) — центральная область смыкания матричных пространств, через которую материи вытекают из нашего матричного пространства.
η(-) — лучевые зоны смыкания с другими матричными пространствами, через которые материи вытекают из нашего матричного пространства.
η(+) — пограничные зоны смыкания с другими матричными пространствами, через которые материи притекают в наше матричное пространство.
i — число форм материй.
m — масса материй.
После простейших преобразований, получаем уравнение баланса:
[n1∫∫χ(+)dmidi – n2∫∫ χ(-)dmidi] – 6[n1∫∫η(-)dmidi – n2∫∫η(+)dmidi] = 0 (2)
Это тождество будет выполняться, если выражения, стоящие в скобках, будут равны нулю.
n1∫∫χ(+)dmidi – n2∫∫ χ(-)dmidi ≡ 0
n1∫∫η(-)dmidi – n2∫∫η(+)dmidi ≡ 0
Максимальная устойчивость, к которой стремиться эта система, возможна при условии n1=n2. При других условиях, матричное пространство нестабильно, и в нём продолжаются процессы образования пространств до появления равновесного состояния.
При этом, система уравнений принимает вид:
∫ ∫χ(+)dmidi – ∫∫ χ(-)dmidi ≡ 0
∫∫ η(-)dmidi – ∫∫η(+)dmidi ≡ 0 (3)
или:
∫ ∫[χ(+)dmidi – χ(-)dmidi] ≡ 0
∫ ∫[η(-)dmidi – η(+)dmidi] ≡ 0 (4)