Выбрать главу

Мало кто из экономистов старой школы заводит об этом речь, ут–верждает Роберт Шиллер, чья книга Irrational Exuberance описывает головокружительные годы доткомов с середины до конца 1990-х как «иррациональный, самодвижущийся, самонадувающийся пузырь».

Когда пузырь лопается, спросите «как?», а не «почему?»

Пузырь и то, как он лопнул, увидели немногие, говорит Шиллер, потому что остальные продолжали смотреть «на данные, на числа, вместо того чтобы смотреть на эмоции, на психологию, на дух времени – ирраци–ональную движущую силу, преобладавшую тогда в культуре».

В этом и заключался феномен доткомов – в этом заключаются все рыночные и культурные сдвиги. Человеческое поведение. То, что застав–ляло американских и британских потребителей продолжать покупать в течение 2002 года, когда экономисты заявляли, что мы находимся в упадке после 11 сентября и впереди еще один экономический спад.

Но даже когда наступила рецессия, покупатели продолжали покупать, цены на дома продолжали расти, кредитные линии продолжали исполь–зоваться и расширяться по мере того, как потребители игнорировали информацию бизнес-изданий: дела плохи, пришло время сокращать рас–ходы. Почему? Потому что после 11 сентября, если люди беспокоились, они выражали свое беспокойство по-человечески понятным образом (только если вы человек, а не экономист), наслаждаясь, развлекаясь, живя сегодняшним днем, вместо того чтобы откладывать на завтраш–ний, до которого они могут не дожить. И это правильно, утверждает Шиллер: «Когда происходит значительное событие – это из-за того… что много факторов движется в одном направлении. Одно из моих за–мечаний к экономистам – они придают настолько большое значение точности, что, когда не могут с точностью учитывать множество раз–личных факторов, предпочитают сконцентрироваться на одном».

Пример из области финансового прогнозирования: особенно при попытках предсказать степень риска используется множество типов электронных таблиц, регрессионный анализ, или так называемые сис–темные динамические модели. Многие из них, вслед за ошибками таких финансовых организаций, как Daiwa, Sumitomo, Barings и Kidder Peabody, используются для проработки сценариев «а что, если… » – например, что произойдет с рынком, если, скажем, в системе окажется бухгалтер-жулик или мошенник либо произойдет ошибка в сложении или вычитании?

Также учитываются округленные коэффициенты – текущие фигуры в экономике, доходы с учетом инфляции на следующий год, ценность компании на фондовой бирже, ее позиция относительно конкурентов на рынке, сильные и слабые стороны ее инвесторов, сильные и слабые стороны конкурентов и так далее.

Очевидно, чем больше коэффициентов вы внесете, тем более точным получится результат, но сколько всего их нужно? Сколько требуется информации или данных (в противоположность знаниям)? И самое главное, что нам вводить? Подробности о погоде от синоптиков? О тен–денциях ежегодных отпусков? О трудовом стаже или служащих компа–нии? А как насчет их личной жизни, эмоционального состояния, куда они ходят за покупками, что они едят?

На этом месте неоклассические экономисты (или брокеры, если мы имеем дело с прогнозированием на фондовой бирже) нажмут кнопку «запустить программу» и пожалуются: «слишком много данных», многие из них «слишком иррациональны, слишком непоследовательны».

Считается, что в таких моделях прогнозирования следует придерживаться простоты, что линейность – это главное

Считается, что в таких моделях прогнозирования следует придерживаться простоты, что линейность —это главное. Что эти модели, если они рациональны и управляются экспертами, как-нибудь приведут к истине. Исключив из модели или программы человеческий аспект, вы также исключите то, что делает ее более-менее точной.

Синоптики сталкиваются с этим постоянно.

В США в марте 2001 года все говорили, что плохая погода неминуема, что ожидается снег, но не должно быть ничего похожего на бурю столетия, случившуюся в 1993-м, когда значительная часть Восточного побережья была парализована из-за трехфутовых сугробов. Однако самые мощные из погодных суперкомпьютеров предрекали худ–шее: в марте 2001-го объявлялись штормовые предупреждения, и экст–ренные службы готовились к снежной буре.

Метеорологи старой школы были в сомнениях, но данные говорили сами за себя, поэтому синоптики просто представили их публике в ка–честве факта. Наступило 6 марта, и, как и предполагалось, пошел снег, но по меркам Штатов это было не страшнее обычного снегопада, при котором дети катаются на санках. Почему же компьютеры допустили ошибку? Они не могли справиться с вычислениями достаточно быстро или достаточно гибко, либо у них было слишком много данных, откло–няющихся от нормы, – коэффициентов, которые программисты сочли нерелевантными. Поэтому они сделали то, что делает большинство про–грамм с линейной или округленной моделью прогноза, столкнувшись с большим количеством данных, – использовали умные алгоритмы, которые отбрасывают некоторые подробности, даже те, которые самым непосредственным образом могут повлиять на результат.