Під час затемнень контур тіні завжди криволінійний, а оскільки затемнення створює інтерпозиція Землі, то форма цієї лінії буде зумовлена формою земної поверхні, яка відповідно сферична. Крім того, наше спостереження за зірками робить очевидним не лише те, що Земля кругла, але й те, що вона не дуже великого розміру. Бо варто нам трохи зміститися на південь або північ, ми бачимо горизонт по-іншому. Я маю на увазі, що в міру переміщення на північ або на південь видимі зірки будуть інші. Фактично деякі зірки, помітні в Єгипті та поблизу Кіпру, не видно в північніших районах, а ті зірки, які на півночі видно постійно, у цих районах сходять і заходять3.
Характерним для Арістотеля у ставленні до математики було те, що він не робив жодних спроб використовувати ці спостереження за зірками, щоб кількісно оцінити розмір Землі. Крім того, мені здається загадковим, що Арістотель також не посилався на явище, про яке знав, мабуть, кожен мореплавець. Коли корабель у морі вперше помічають у ясний день на великій відстані, то «його корпус ховається за горизонтом» – кривизна земної поверхні приховує все, крім верхівок щогл, але в міру наближення судна воно стає видимим повністю[14].
Те, що Арістотель зрозумів, що Земля має форму сфери, було чималим досягненням. Анаксімандр вважав, що Земля – циліндр, на пласкому боці якого ми й живемо. На думку Анаксімена, Земля пласка, тоді як Сонце, Місяць та зірки плавають у повітрі й ховаються від нас, коли заходять за земні підвищення. Ксенофан писав: «Верхню межу Землі ми бачимо під ногами, але частина під нею йде вниз до нескінченності»4. Пізніше і Демокріт, і Анаксагор почали вважати, як і Анаксімен, що Земля пласка.
Підозрюю, що причиною стійкої віри у пласку Землю могла бути очевидна проблема з ідеєю сферичної Землі: якщо Земля – це сфера, тоді чому мандрівники з неї не падають? Чудовою відповіддю на це запитання стала теорія матерії Арістотеля. Він розумів, що немає універсального напрямку «вниз», яким рухаються всі об’єкти, що падають будь-де. Радше скрізь на Землі об’єкти, що складаються з важких елементів землі та води, мають тенденцію падати до центру світу, як видно зі спостережень.
У цьому сенсі теорія Арістотеля про те, що природне місце важких елементів – у центрі Всесвіту, працювала дуже схоже на сучасну теорію гравітації з тією важливою відмінністю, що для Арістотеля існував лише один центр Всесвіту, тоді як сьогодні ми розуміємо, що будь-яка велика маса матиме тенденцію стискатися у сферу під впливом її власної гравітації, а потім притягуватиме до свого центру інші тіла. Теорія Арістотеля не пояснювала, чому сферою має стати будь-яке інше тіло, крім Землі, проте він знав, що сферою є як мінімум Місяць, судячи з поступової зміни його фаз – з повного до молодика й назад5.
Після Арістотеля загальновизнаною думкою серед астрономів та філософів (окрім небагатьох на кшталт Лактанція) було те, що Земля – це сфера. Подумки Архімед навіть бачив сферичну форму Землі у склянці води: у твердженні 2 твору «Про плаваючі тіла» він демонструє, що «поверхня будь-якої рідини у стані спокою – це поверхня сфери, центром якої є Земля»6. (Це було б правдою, якби не було поверхневого натягу, яким Архімед нехтував.)
Тепер я переходжу до того, що в дечому є найбільш вражаючим прикладом застосування математики до природничих наук у Стародавньому світі, – до праці Арістарха Самоського. Арістарх народився близько 310 року до н. е. на іонійському острові Самос, був учнем Стратона Лампсакського, третього керівника Лікея в Афінах, а потім працював в Александрії аж до своєї смерті близько 230 року до н. е. На щастя, збереглася його головна робота «Про розміри й відстані Сонця та Місяця»7. У ній Арістарх бере за постулати такі чотири астрономічні спостереження: