в процессе сочинения (результат которого мы также будем обозначать сочинение) возникает не тождественный сочинению текст, который есть некая функция f переменной я, а первой производной от этой функции является персонаж, то есть в условных математических обозначениях: текст = f(я)
и
персонаж = текст'
следовательно
персонаж = f(я)'
Второй же производной от функции текст является сюжет, третьей - смысл или идея, идейное содержание (И.С.), по определению критиков-материалистов, четвертой - цель, или, как ее называют некоторые идеалистически настроенные исследователи, Божественное Назначение (Б.Н.): Б.Н. = цель = (И.С.)' = идея' = смысл' =
= сюжет'' = персонаж''' = текст'''' = f(я)''''
Таким образом, получаем: Божественное Назначение = f(я)''''
Сформулируем это равенство словами:
"Божественное Назначение" "сочинения" является четвертой производной от текстовой функции переменного "я". "Я" в данном случае обозначает некоторую личность, которую для простоты называют "творческой".
Примечание: иногда "я" называют также "автором", "художником", "демиургом" и некоторыми другими терминами. Мы (т.е. автор. - Прим. автора) в дальнейшем, из соображений экономии знаков, будем употреблять термин "автор".
Рассуждая от противного, а в некоторых частных случаях сочинений - от очень противного и даже отвратительного, мы легко придем к выводу, что последовательным интегриро... (УВЫ! НЕ ЗАВЕДЕНО ЗНАЧКА В МОЕМ КОМПЬЮТЕРЕ! А КАК БЫЛО БЫ ЭЛЕГАНТНО - ВЫТЯНУТЬ ЗДЕСЬ СКРИПИЧНЫМИ ПРОРЕЗЯМИ ИНТЕГРАЛЬЧИК-ДРУГОЙ!) ...ванием можно из Божественного Назначения получить я, то есть личность так называемого автора. Что же необходимо для этого? Как известно, необходимо математическое описание основной функции автора, то есть текстовой: f(я) = текст
Но именно с этим и возникают затруднения, поскольку до сих пор эксперименты не дали сколько-нибудь систематических результатов, которые позволили бы установить закономерность. Не определены даже основные константы, более того, относительно некоторых величин, таких, например, как часто употребляемый специалистами талант (обозначим Т), есть гипотеза о свойстве меняться на отрезке, равном существованию одного я ("автора"). Следовательно, Т нельзя считать const., а следует, в свою очередь, рассматривать как неизвестную функцию (обозначим ее F) от времени (t): Т = F(t)
Еще большую сложность представляет описание такого крайне редко входящего в уравнение f(я) = текст члена как гений(Г). Отдельные источники указывают на некоторые необходимые признаки наличия Г в функции f(я), например: Г и З = несовм.
где З обозначено злодейство. Однако, даже если считать верным, что отсутствие З в я есть необходимый признак существования Г в этом я (что опровергается многими случаями), то признака достаточного мы до сих пор не имеем. Существует, впрочем, мнение, что использование коэффициента Г в уравнении текст = f(я) правомерно, если текст и сочинение в целом не зависят от времени t: текст = текст
при
t (стремится) хрен его знает куда
Однако проверить это утверждение в тех случаях, когда я ("автор") еще, черт бы его драл, жив, практически невозможно.
Наконец, многие считают, что наличие Г несомненно, если Божественное Назначение не равно 0. Но это утверждение представляет собой тождество и порочную попытку определить одно неизвестное через другое, что передовая наука отвергает.
Эта самая передовая наука в последние годы склонна, чтоб она провалилась, и Т, и Г, и еще многие прежде вносившиеся в рассматриваемое уравнение величины - такие, как труд (ТР), удача (У), здоровье (ЗД) - умножать на коэффициент КСС (критическое свободное слово). Введение его в формулу сочинения значительно упрощает задачу, и мы получаем: текст = f(я) = КСС {Г(при t любом) + [Т = F(t)] + ТР + У + ЗД}(я)
Итак, мы можем описать сочинение - как процесс, так и результат неопределенным (совершенно, гадство, неопределенным) уравнением со многими (и еще далеко не всеми) неизвестными и одним коэффициентом, хорошо известным многим из нас, который, если он равен нулю, приравнивает к нулю и весь многочлен. Если же учесть, что указанный коэффициент, мать бы его так, почти всегда равен именно нулю, 0, zero, то...
В общем, хватит, пока вы вместе со мною совсем не офигели и не запустили этой занимательной арифметикой в угол.
Хотя... Что-то в ней есть. Как во всякой науке - начинается, вроде, с чистой ерунды - цифирки, буковки, значочки, искры сыплются между шарами, и пахнет хорошо, железяка светится в темноте - а потом как даст!..
Но до Чернобыля доводить не будем. А будем считать, что все понятно насчет автора, героя-рассказчика, текста и так далее.
И вернемся к делу.
И за большие заслуги в деле... ну, в общем, в нашем деле, герою-рассказчику присвоим почетное наименование.
Назову тебя И.
Нет, лучше No 1.
Потому что теперь все стали своих героев называть инициалами, мода пошла, почему-то вспомнили "господина N." и другие классические обозначения.
Значит, воспользуемся номером.
8
А получается-то г-н No 1 весьма несимпатичным.
Всячески декларирует свою ни с чем не сравнимую нравственность. Карьеру она ему сделать не позволила - пришлось бы, видите ли, поступаться своими принципами, манипулировать людьми, принимать себя и окружающее всерьез, отказаться от столь органически ему присущей наивной иронии. Вы, значит, возитесь, как хотите, а я в сторонке ухмыляться буду. И при этом страшно обижается, когда получает в ответ - ну, стой, мы себе другого найдем, он нас замотает, но и себе жилы рвать будет, а не посмеиваться. Надувает губы: я-то, сам про себя, могу сказать, что дурак и шут, но почему же вы соглашаетесь?
То же самое и с творчеством так называемым. Очевидно стремится к осуждаемому самим же идеалу - и рыбкой перекусить, и присесть удобно.
Как-нибудь так устроиться, чтобы жить, как добропорядочный мещанин, в достойном лицемерии и со всеми приличиями, а талант не зарыть и равняться в нем с пропойцами, бездельниками, настоящими злыднями и прочей гениальной дрянью.
Предлагать рукоплещущему человечеству прописи, рисунки домиков и собачек, любовь, одной левой побеждающую смерть, торжество добра, только что разбившего свой кулак об морду зла - и жутко расстраиваться, обнаружив все это уже имеющимся в букваре.