Выбрать главу

"Чтобы читателю стало яснее, как выписывается число, не получившее номера, предположим, что при выбранной нумерации первые пять чисел имеют следующий вид:

4,27364…

–1,31226…

7,95471…

0,62419…

8,56280… " [там же].

Здесь очевидна небольшая неточность, поскольку автором, судя по всему, выбран интервал [0, 1], а на этом интервале таких чисел при выбранной нумерации не будет никогда. Однако эту неточность оставим без критики, просто заменив в них цифру перед запятой на ноль, поскольку пояснение вполне верно описывает принцип формирования искомого числа.

"Тогда число, не получившее номера, будет начинаться со следующих десятичных знаков: 0,12121 . . . Разумеется, не только это, но и многие другие числа не получили номеров (мы могли бы заменять все цифры, кроме 2, на 2, а цифру 2 на 7 или выбрать еще какое-нибудь правило). Но нам достаточно существования одного-единственного числа, не получившего номера, чтобы опровергнуть гипотезу о возможности нумерации всех действительных чисел" [3, с.73-74].

Еще раз отметим, что доказательство на самом деле рассматривает бесконечно малую часть всех действительных чисел – на интервале [0, 1]. Предложенный способ просмотра чисел некорректен. При таком способе все просматриваемые действительные числа на этом интервале будут сгруппированы возле нулевой точки. И ожидаемого числа 0,12121, приведенного в качестве примера, получено не будет никогда. А будет образовано указанное выше число N из бесконечного количества двоек.

Следовательно, в этом отношении доказательство не может достичь успеха, поскольку полученное число точно имеется на близлежащем интервале. Действительно, на интервале, например, от 0,222 до 0,223 присутствуют все возможные комбинации знаков после запятой, в том числе и знаков указанного числа N.

Конечно, в доказательстве явно не указана последовательность номеров чисел. Но под "нам удалось" тоже явно никто не указан. Эти самые "нам" могли перенумеровать числа интервала подряд: сначала все возле нуля, затем они дошли до 0,1 и так далее.

В рассмотренном выше примере с перестановкой запятой (2) такие пропущенные числа очевидны, например, в нем отсутствуют числа 1,111 и 2,222. Однако и традиционный метод нахождения пропущенного числа изначально содержит логическую ошибку, противоречие. Подбор такого числа дает результат, который изначально обязательно должен был быть подсчитанным, пронумерованным натуральным числом. Покажем эту очевидную логическую ошибку такого нахождения отсутствующего числа в более явном виде.

Предположим, что в процессе поиска получено новое число, скажем, 0,7182814159.... Однако это число не является новым, отсутствующим в пронумерованном множестве. Это странным образом не замеченное очевидное обстоятельство. Очевидно, что последовательности цифр после запятой всех действительных чисел являются полными, исчерпывающими, содержащими все без исключения их возможные комбинации. То есть, любая наперед заданная комбинация цифр, в том числе и у этого "найденного", обязательно присутствует в бесконечном множестве действительных чисел. Более того, любое число с конечным числом знаков как фрагмент, шаблон присутствует в этом ряду бесконечное число раз. Действительно, "найденных" чисел вида 0,718nnn… – бесконечное множество, как и чисел 0,7182814nnn…, где n – любая цифра, поэтому среди них обязательно имеется и "найденное". Следовательно, любое найденное подобным образом число, обязательно имеется среди подсчитанных, то есть, оно пронумеровано, как и любое другое из множества действительных чисел, что означает счетность всех действительных чисел.

Ошибочность доказательств многих тезисов Кантора вызвана выбором специфического метода подсчета числа элементов, неудачного способа записи последовательностей этих элементов, в результате чего отождествление элементов оказалось завуалированным.

Очевидно, что указанный метод доказательства несчетности множества действительных чисел, который можно назвать традиционным, содержит явную логическую ошибку и непригоден сам по себе. Этот метод опирается на недопустимое предположение "если кому-то удалось все их пересчитать, то можно найти пропущенное". Вместе с тем существует достаточно очевидный способ записи элементов континуума, наглядно доказывающий счетность всех мыслимых видов чисел, и позволяющий записать все их строго последовательно.