Следует признать, что нумерация точек квадрата диагональным процессом менее удобна, чем способ конвертации номеров (6). При конвертации мы легко можем по натуральному порядковому номеру N точки p(x,y) определить её координаты x, y и наоборот. Использование же в этих целях выражения (5) связано с заметными вычислительными трудностями.
Таким образом, приведенные рассуждения позволяют подвести итог и сделать однозначный вывод:
Вся бесконечная последовательность действительных чисел, континуум любого числа измерений являются счётными, все они могут быть пронумерованы натуральными числами.
Задача об "Отеле Гильберта"
Судя по всему, вопросы бесконечных множеств сложны не только для рядовых математиков. Иной раз в слабом их понимании можно заподозрить и величайших специалистов в этой области. Рассмотрим рассказ, который, как считается, предложил Гильберт где-то в третьем десятилетии 20 века [9, 8, 10; 3, с.70-71].
Представим себе гостиницу с бесконечным числом комнат. Комнаты пронумерованы натуральными числами от 1 до ∞. Однажды в гостиницу вошел человек и попросил снять комнату. К сожалению, для нового гостя не нашлось комнаты, так как отель был полностью заполнен бесконечным числом гостей, и не было ни одного свободного номера. Как предоставить новому гостю свободную комнату, не выселяя никого из постояльцев?
Несмотря на то, что по условиям задачи все номера заняты, утверждается, что, тем не менее, существует возможность выделить сколько угодно свободных комнат. Для этого необходимо переселить постояльца из первой комнату во вторую, постояльца из второй комнаты в третью и так далее. То есть, каждого постояльца из комнаты с номером n необходимо переселить в комнату с номером n+1, n→n+1. В результате этого освобождается комната с номером один, и в неё можно поселить нового гостя. Здесь неявно подразумевается, что переселение выселением не является.
Но это решение ошибочно. По условиям задачи определённо сказано, что свободных номеров нет! Следовательно, данный «парадокс» Гильберта является псевдо парадоксом [9], поскольку вместо подселения производится выселение. В предложенном решении производится подмена понятий. Состояние, стационарное, неизменное – заполненность всех номеров жильцами – подменяется процессом, динамическим, движением – переселением постояльцев из одного номера в другой.
Во-первых, этот процесс будет длиться вечно, во-вторых, в случае даже одного нового гостя, на всём протяжении процесса переселений один из постояльцев всегда будет без гостиничного номера, то есть, будет сидеть в коридоре, что является нарушением условий решения задачи. Иначе говоря, все постояльцы просто поделились своим временем проживания с новым жильцом как в пословице "с миру – по нитке".
Собственно математическая ошибка состоит в том, что за большим числом постояльцев как-то незаметно прячется суть задачи. Математической процедурой, манипуляцией с бесконечностями подменяется само содержание исходного тезиса: подселение в заполненный отель дополнительных постояльцев. Показать эту подмену можно, если взять противоположный предельный вариант: в отеле всего один номер, и он занят. Для того чтобы поселить нового, прежнего постояльца временно выселяют буквально в коридор под предлогом переселения. Здесь, как видим, и обнаруживается скрытая подмена понятий переселения и выселения. Вновь пришедшего гостя селят в освободившийся номер. Но прежнего постояльца тоже надо куда-то поместить. Поэтому вновь заселенного гостя опять выселяют, а на его место селят прежнего постояльца. И так по кругу. В конечном счете, каждый из них в номере проживает только половину времени, а вторую – на стуле в коридоре.
В таком варианте задача принципиально ничем не отличается от задачи с бесконечным числом комнат. Добавим ещё одну комнату и будем по кругу переселять теперь уже троих постояльцев. Можно добавить и четверную комнату и производить всё ту же процедуру "переселения-выселения". Дойдя до бесконечности, мы и получим парадокс отеля в исходном варианте. Однако в его минимальной конфигурации мы явно обнаруживаем: постояльцы, по сути, часть времени проводят на стуле возле комнаты. При бесконечном числе комнат и конечном числе новых постояльцев это время стремится к нулю. Отличие только в этом. Если же число постояльцев растет, как предлагается в расширенных версиях парадокса, то и время "на стуле около комнаты" также будет расти вплоть до той же исходной величины – половины времени проживания. Рассмотренные решения «парадоксов» нарушают главный принцип отелей: постоялец должен вселиться и жить в нем, пока сам не решит его покинуть.