Выбрать главу

Для того, чтобы представить себе, как мала полученная вероятность, проведем следующие расчеты. Во всей видимой Вселенной приближенно насчитывают 10^80 элементарных частиц. Представим себе, что это не элементарные частицы, а только биологические аминокислоты, которые вступают во взаимодействие миллиард раз в секунду на протяжении тридцати миллиардов лет (самый большой из предполагаемых возрастов Вселенной). Но и тогда произойдет только 10^107 реакций. В миллиарде миллиардов таких Вселенных не произойдет при таких условиях достаточного количества реакций, чтобы их хватило на перебор нужного количества комбинаций, и то при условии, что каждая неудачно построенная комбинация тотчас разбирается и возвращается в исходное положение. Что говорить тогда о капле в этом космосе – о земном океане. Сколько миллиардов миллиардов лет понадобилось бы ему, чтобы даже при таких фантастически удобных условиях собрать самую простейшую из биологических макромолекул? Между тем в самой примитивной клетке этих молекул сотни и тысячи!

На этом, кажется, вполне можно остановиться в подсчетах вероятности и под грудой сверхастрономических цифр навсегда похоронить гипотезу Опарина. Самые условия для расчета вероятностей выбраны нами благоприятными до невозможности. Тем не менее, даже имея возможность сделать указанный простенький расчет, очень солидные ученые тратили годы и десятилетия, чтобы доказать гипотезу Опарина экспериментально.

ОПЫТЫ С. МИЛЛЕРА

Школьный учебник упоминает об экспериментах Миллера по синтезу аминокислот и белков в условиях предполагаемой первичной атмосферы земли. К сожалению, ничего не говорится о реальных результатах этого очень сложного эксперимента, а они весьма показательны.

Миллер, пропустил разряды электричества в 60 киловольт через кипящую смесь воды, метана, водорода и аммиака. Как и следовало ожидать, продукты реакции тут же разлагались ее обратным ходом. Миллер использовал холодильный сепаратор, позволявший быстро удалить продукты из зоны реакции. (Где и какой слепой случай создал бы такой аппарат на первобытной земле? А без него у эксперимента не было бы вообще никакого результата.)

Из продукта реакции – клейкой дегтеобразной смеси – удалось выделить две простейших аминокислоты, содержащихся в белках – глицин и аланин. Прочих 18 видов аминокислот, содержащихся в белках, так и не удалось получить. Впрочем, были получены аминокислоты, вообще не содержащиеся в белках.

Были и другие подобные попытки, но не более удачные.

Следует отметить, что искусственный синтез хотя бы какого-то «фрагмента живого» из неорганических веществ свидетельствовал бы о высокой точности и грамотной постановке тончайшего и сложнейшего эксперимента, а вовсе не о неизбежности случайного возникновения жизни. В книгах по креационной науке часто встречается такой рисунок (рис. 11). Это свидетельство против самого себя!

Нет нужды говорить о том, как далеки результаты этих опытов от самого простейшего белка и как далек был бы сам этот белок от простейшей живой клетки.

ПРОСТРАНСТВЕННАЯ ИЗОМЕРИЯ

В курсе органической химии вы ознакомились с явлением изомерии, когда два вещества могут иметь одинаковый состав молекулы, то есть в точности равное количество атомов каждого элемента, но молекулы эти различаются пространственным расположением атомов. Это явление характерно и для биологических аминокислот. Как известно, общая формула аминокислоты такова:

R – радикал, свой особый для каждой аминокислоты.

Эту формулу можно переписать иначе:

Оказывается, что это не одно и то же. Пространственное расположение аминной и карбоксильной групп влияет на свойства не только аминокислоты, но, главное, на свойства составленного из нее полимера. Если составить пространственную модель молекулы, то станет видно, что первая форма расположения является зеркальным отображением второй. Поэтому и принято различать так называемые правые и левые формы изомеров.

Возникновение правой или левой формы в процессе миллеровского синтеза равновероятно, поэтому полученная им смесь аминокислот содержит равное соотношение правых и левых форм. Но интересно то, что в живых белках встречаются только левые формы аминокислот, которые только и могут придать белкам спирально закрученную форму. Какая молния или какие коацерваты сумели так тщательно разделить изомеры, химически почти неразделимые?

Подобная же изомерия наблюдается у сахарозы, входящей в состав нуклеиновых кислот, причем все биологические сахарозы – правые изомеры. Как они могли отделиться в воображаемом первобытном бульоне от своих левых изомеров – химики не могут себе даже представить, не то что воспроизвести экспериментально. Кроме того, сахарозы могли бы соединиться с азотистыми основаниями и фосфорной кислотой множеством различных способов, которые нигде в живой ДНК не встречаются. Все это полагает непреодолимую преграду самопроизвольному возникновению жизни.

ПРОБЛЕМА КИСЛОРОДА

Разработчики идеи самопроизвольного возникновения жизни вслед за Опариным считают, что в первобытной атмосфере не должно было содержаться свободного кислорода, иначе он окислил бы и разложил формирующиеся белки. Окисленное состояние одновременно и энергетически выгоднее, и беспорядочнее, чем состояние сложной молекулы.