Выбрать главу

Следует отметить, что искусственный синтез хотя бы какого-то «фрагмента живого» из неорганических веществ свидетельствовал бы о высокой точности и грамотной постановке тончайшего и сложнейшего эксперимента, а вовсе не о неизбежности случайного возникновения жизни. В книгах по креационной науке часто встречается такой рисунок (рис. 11). Это свидетельство против самого себя!

Нет нужды говорить о том, как далеки результаты этих опытов от самого простейшего белка и как далек был бы сам этот белок от простейшей живой клетки.

ПРОСТРАНСТВЕННАЯ ИЗОМЕРИЯ

В курсе органической химии вы ознакомились с явлением изомерии, когда два вещества могут иметь одинаковый состав молекулы, то есть в точности равное количество атомов каждого элемента, но молекулы эти различаются пространственным расположением атомов. Это явление характерно и для биологических аминокислот. Как известно, общая формула аминокислоты такова:

R – радикал, свой особый для каждой аминокислоты.

Эту формулу можно переписать иначе:

Оказывается, что это не одно и то же. Пространственное расположение аминной и карбоксильной групп влияет на свойства не только аминокислоты, но, главное, на свойства составленного из нее полимера. Если составить пространственную модель молекулы, то станет видно, что первая форма расположения является зеркальным отображением второй. Поэтому и принято различать так называемые правые и левые формы изомеров.

Возникновение правой или левой формы в процессе миллеровского синтеза равновероятно, поэтому полученная им смесь аминокислот содержит равное соотношение правых и левых форм. Но интересно то, что в живых белках встречаются только левые формы аминокислот, которые только и могут придать белкам спирально закрученную форму. Какая молния или какие коацерваты сумели так тщательно разделить изомеры, химически почти неразделимые?

Подобная же изомерия наблюдается у сахарозы, входящей в состав нуклеиновых кислот, причем все биологические сахарозы – правые изомеры. Как они могли отделиться в воображаемом первобытном бульоне от своих левых изомеров – химики не могут себе даже представить, не то что воспроизвести экспериментально. Кроме того, сахарозы могли бы соединиться с азотистыми основаниями и фосфорной кислотой множеством различных способов, которые нигде в живой ДНК не встречаются. Все это полагает непреодолимую преграду самопроизвольному возникновению жизни.

ПРОБЛЕМА КИСЛОРОДА

Разработчики идеи самопроизвольного возникновения жизни вслед за Опариным считают, что в первобытной атмосфере не должно было содержаться свободного кислорода, иначе он окислил бы и разложил формирующиеся белки. Окисленное состояние одновременно и энергетически выгоднее, и беспорядочнее, чем состояние сложной молекулы.

Но геологи отвергли эту идею, поскольку самые древние, какие только существуют на земле, осадочные породы содержат окисленное трехвалентное железо и карбонаты, то есть вещества с высоким содержанием связанного кислорода, которые вряд ли могли возникнуть в бескислородной атмосфере.

Кроме того, если ранняя атмосфера не содержала кислорода, то она не могла иметь и защитного озонового экрана и свободно пропускала полный спектр смертоносных ультрафиолетовых лучей, к которым особенно чувствительны нуклеиновые кислоты. Это излучение должно было моментально уничтожить любые компоненты жизни при самом их зарождении. Печальный выбор стоял бы перед такими сложными молекулами – кто их уничтожит: если не кислород, то ультрафиолет, а если не ультрафиолет – значит, кислород.

ПРОБЛЕМА ПОСЛЕДОВАТЕЛЬНОСТИ ВОЗНИКНОВЕНИЯ

Еще одно очень важное условие возникновения самой примитивной формы жизни – это одновременное появление на свет в одном месте и в связанном в виде и белков, и нуклеиновых кислот, кодирующих эти белки. Синтез нуклеиновых кислот производится с помощью белков-ферментов, а сами белки синтезируются по программе, записанной и переданной с помощью нуклеиновых кислот. Кроме того, в живой клетке всегда присутствуют исключающие друг друга белки. Если убрать некоторые препятствия, эти вещества тотчас взаимно уничтожат друг друга. Далее, клеточная мембрана обеспечивает условия внутри клетки, дающие возможность синтеза белка, но сама эта мембрана также состоит из белков.

Подобные примеры можно продолжить, но уже и так совершенно ясно одно: ни один из элементов живой клетки не мог возникнуть раньше других, ни один не мог улучшиться или развиться сам по себе, независимо от других. Все молекулы, составляющие клетку, должны «шагать» в ногу на всем пути своей воображаемой эволюции. Вероятность же такого развития еще более ничтожна, чем возникновение белковой молекулы.