Выбрать главу

Здесь нет места для более подробного описания связи структуры электронных оболочек атомов с их положением в таблице Менделеева, но каждый желающий может продлить этот анализ в пределах всей таблицы химических элементов.

Серьезность «Шуточной физики для пешеходов»

Открытие спина электрона и его роли, как характеристики квантового состояния электрона в микросистемах, имело далеко идущие последствия. Выяснилось, что наличие спина вносит существенные особенности в поведение объектов микромира. Целый ряд трудностей и парадоксов, с которыми встречалась классическая статистика при попытках применить ее для описания свойств микромира, связан с тем, что она попросту неприменима к этому кругу явлений. Все эти трудности и парадоксы исчезли как по мановению волшебной палочки после того, как Ферми и Дирак разработали особую статистику. Она учитывала принцип запрета, заставляющий из набора возможных состояний системы принимать во внимание только те, где каждое квантовое состояние занято лишь одной частицей. Вскоре, однако, оказалось, что и новая квантовая статистика не способна объяснить часть закономерностей микромира. Прежде всего это было установлено в процессах с участием фотонов.

Выход из тупика обнаружил индийский физик Бозе. Он послал свою работу «отцу фотонов» — Эйнштейну, который сразу же оценил ее выдающееся значение и немедленно рекомендовал к опубликованию. Идея Бозе опиралась на то, что частицы, обладающие целочисленным значением спина, а фотоны принадлежат к их числу, не подчиняются правилу запрета. Значит, они не должны подчиняться статистике Ферми-Дирака. Поэтому в каждом квантовом состоянии может находиться любое число таких частиц. Физики вздохнули с облегчением. Работы Эйнштейна в области квантовых свойств света послужили ему отличной основой не только для понимания идеи Бозе, но и для ее воплощения в строгую математическую форму. Так возникла новая квантовая статистика-статистика Бозе-Эйнштейна, а частицы микромира оказались сгруппированными в два существенно различных класса. Частицы, принадлежащие к одному из них, получили название бозонов. Они характеризуются целочисленным значением спина (0, ± 1, ±2, ± 3…) и подчиняются статистике Бозе-Эйнштейна. Частицы второго класса характеризуются полуцелыми значениями спина (± 1/2, ± 3/2, ± 5/2…) и подчиняются статистике Ферми — Дирака.

Причина и значение такого разделения оставалась в течение долгого времени таинственным и непонятным фактом. Лишь совсем недавно появились надежды на то, что и эта загадка будет разрешена. В основе этого различия, вероятно, лежит еще один тип симметрии, присущий микромиру. Как это ни курьезно — первый подход к решению загадки различия между фермионами и бозонами был опубликован в юмористическом журнале, издание и чтение которого позволяет физикам отдохнуть от утомительного занятия наукой. В одном из номеров журнала «Шуточная физика для пешеходов» в 1962 году появилась статья Липкина, содержавшая бездоказательное, а потому несерьезное, просто фантастическое предположение о том, что фермионы и бозоны являются близкими родственниками и даже образуют одно общее семейство. В соответствии с этим Липкин предложил особую барбарионскую, или иначе «варварскую», классификацию частиц. (По-английски здесь игра слов: «barbaruon» и «barbarian», то есть «варварский».) Но через два года Липкин еще раз возвратился к возможности барбарионской классификации элементарных частиц, теперь уже в серьезном журнале, специально предназначенном для публикации коротких, но важных сообщений. Барбарионская классификация вскрывает незамеченную ранее симметрию свойств частиц. Позволяет усмотреть их глубокое родство, объединяющее в общее семейство частицы, имеющие различный спин и различное барионное число (один из параметров, характеризующий свойства тяжелых частиц).

Для наглядности представим себе группу спортсменов, построенных «в затылок» в колонну по одному, начиная с легковесов и кончая тяжеловесами. При этом группа подобрана так, что каждый вес представлен двумя спортсменами (как для соревнований по боксу или борьбе). Затем следует команда: «на первый-второй рассчитайся», и команда: «первые — шаг влево, вторые — шаг вправо». Теперь они стоят зигзагом в две колонны, слева «нечетные», справа «четные». Так единая группа оказывается ранжированной по двум признакам: по весу и по четности. Возвращаясь к частицам, заметим, что весу спортсменов соответствует барионное число, а четности — значение спина. Частицы, имеющие одинаковое барионное число, могут иметь различные значения спина. Спин, как мы знаем, определяет принадлежность частицы к той или иной классификации. Полуцелый спин относит частицу к подсемейству фермионов и заставляет ее подчиняться статистике Ферми-Дирака. Целочисленный спин означает, что частица относится к подсемейству бозонов и подчиняется статистике Бозе-Эйнштейна. Внутри этих подсемейств обнаруживаются дальнейшие различия, ибо, как уже упоминалось, фермионы могут иметь различные «полуцелые» значения спинов (±1/2, ±3/2, ±5/2…), а бозоны различные целые значения (0, ±1, ±2, ±3…). Это приводит к реальным физическим различиям внутри двух основных подсемейств бозонов и фермионов.