Прошло еще пятнадцать миллиардов лет, и вот читатель взял эту книгу и узнал, что в настоящее время в природе должно существовать примерно 25 % гелия и 75 % водорода, а Вселенная должна быть наполнена фотонами —4 реликтовым электромагнитным излучением с температурой около 3 К.
Оба эти «предсказания» удивительно точно совпадают с экспериментом.
Казалось, на этом можно поставить точку.
Но наука не может остановиться.
От пустоты к вакууму
К тому моменту, когда удалось составить описанный выше сценарий развития Вселенной, ученые добыли новые знания как в ходе чрезвычайно сложных экспериментов с элементарными частицами, так и в попытках понять и описать математически результаты этих экспериментов.
Возникшие на этой основе теории позволили приблизиться к пониманию эволюции Вселенной на еще более ранних стадиях.
При этом существенную роль сыграло изменение взгляда ученых на вакуум. Это может показаться странным тем, кто привык считать понятия «вакуум» и «пустота» синонимами.
Понятие «пустота» тревожило людей издревле. Аристотель пришел к мнению о том, что пустота невозможна. Он сформулировал это кратко и четко: «Природа не терпит пустоты».
Лишь в 1644 году Э. Торричелли проделал свой знаменитый опыт: он запаял один конец длинной стеклянной трубки, повернул трубку открытым концом вверх и до краев заполнил ее ртутью; затем он закрыл этот конец трубки пальцем и опустил его в чашку со ртутью. Убрал палец — столб ртути опустился. Его высота равнялась 750 мм. В трубке над ртутью было пусто. Торричелли считал, что там ничего нет, даже газа, что там вакуум.
В конце прошлого века И. Стефан, его ученик Больцман и Планк, передавая друг другу эстафету исследования свойств электромагнитного поля, пришли к заключению, что вывод Торричелли требует уточнения. Если в торричеллиевой пустоте нет и следов газа, это не значит, что там нет совершенно ничего. Там обязательно существуют хаотические электромагнитные волны, находящиеся в тепловом равновесии со стенками сосуда. Вскоре (в 1905 году) Эйнштейн установил, что электромагнитное поле в некоторых случаях ведет себя как совокупность особых частиц — квантов электромагнитного поля. Эти кванты теперь называют фотонами.
Так было установлено, что вакуум не пуст.
В вакууме всегда присутствуют фотоны, постоянно испускаемые стенками сосуда, ограничивающего вакуум, и поглощаемые этими стенками. В космосе, где нет стенок, фотоны порождаются всеми материальными частицами, от атомов до звезд. Этот вывод, следующий из классической электродинамики, подтвержден опытом.
Квантовая физика привела к дальнейшему уточнению понятия «вакуум». Из фундаментальных законов квантовой физики следует, что даже при нулевой температуре в каждой точке вакуума постоянно попарно рождаются и тут же исчезают, сливаясь между собой частицы и античастицы любого типа. Физики называют эти пары частиц и античастиц виртуальными. (Название, происходящее от латинского virtualis — возможный, могущий появиться.)
Виртуальные частицы не выдумка теоретика, они вступают во взаимодействие с реальными частицами, и это взаимодействие изменяет характеристики реальных частиц. Современные измерительные приборы позволяют зафиксировать эти изменения. Результат таких изменений был с огромной точностью зафиксирован в спектре атомов водорода.
Достаточно сильное поле, например электростатическое, или переменное электромагнитное поле может вызвать превращение виртуальных частиц вакуума в пары реальных частиц и античастиц. Такое рождение электрон-позитронных пар и пар других частиц и античастиц наблюдается во многих опытах.
Среди поразительных свойств вакуума, пожалуй, самое поразительное содержится в ответе на вопрос: обладает ли вакуум свойством гравитации?
Этот вопрос был впервые поставлен Эйнштейном еще в 1917 году. Уже тогда было ясно, что вакуум не пуст, что из него невозможно удалить виртуальные фотоны. А сам Эйнштейн еще за год до того установил, что реальные фотоны реагируют на гравитационное поле, что путь фотонов вблизи массивных тел искривляется. Это искривление наполовину вызвано именно тем, что фотон обладает массой и поэтому подвергается действию поля тяготения.