Вначале он был бескомпромиссно предан взглядам Бора, принял их, как видно, полностью, без критики.
Но во всем ли Бор безупречен? Не вкрались ли в постановку задачи ошибки?
Бор считал орбиты электронов в атомах круговыми. Тут он был прямым последователем Коперника, который тоже представлял себе орбиты планет кругами. И ошибался, как мы теперь знаем. Это понял Кеплер. Он смог объяснить тонкие эффекты планетных движений, лишь предположив, что планеты движутся не по окружностям, а по эллипсам.
Обдумывая расхождения между расчетами Бора и спектром водорода, полученным из опыта, Зоммерфельд словно заразился сомнениями Кеплера. И он поначалу исходил из уверенности Бора: орбиты электронов в атоме круговые. Но это привело его к противоречию с опытом. Итак, может быть, они, как и орбиты планет, эллиптические? Может быть, электроны движутся по эллипсам, в одном из фокусов которых расположено ядро атома? Зоммерфельд, идя по стопам Бора, пошел дальше. Он придал новый смысл квантовому числу. Пусть оно фиксирует не радиус, а среднее расстояние от ядра, вокруг которого электрон движется по эллиптической орбите. Проверка, размышления. Совпадения со спектральными данными не было! И Зоммерфельд вводит еще одно, новое квантовое число — для обозначения угла, характеризующего направление от ядра к электрону. Снова расхождения. Зоммерфельд был вынужден предположить, что плоскость, в которой лежит оптическая орбита электрона, наклонена к некоторой экваториальной плоскости. Он характеризовал такой наклон еще одним, «экваториальным» пантовым числом.
Введя свои квантовые числа, Зоммерфельд назвал боровские квантовые числа главными, а свои — одно «азимутальным», а другое, как мы знаем, «экваториальным».
Позже Зоммерфельд напишет: «Это пространственное квантование несомненно относится к поразительным результатам теории. По простоте вывода и результатов оно выглядит почти как колдовство».
О том, как, пользуясь «колдовским» методом, ученые продолжали рассчитывать схемы устройства различных атомов, мы расскажем дальше. А сейчас несколько слов о судьбе работ Генри Мозли.
Возвратимся в 1915 год, год смерти молодого физика. Эстафетную палочку, выпавшую из его рук, поднял Вальтер Коссель, физик-экспериментатор, окончивший Гейдельбергский университет в 1911 году. Главный его интерес был сосредоточен на спектроскопии, теории химических связей и периодической системе химических элементов. Сопоставив рентгеновские спектры атомов с последовательно заполняющимися электронными оболочками атомов, он понял природу химической связи. Это было в 1916 году. Работая в Мюнхенском университете, он поразил научный мир солидной работой — показал, что химические свойства атомов определяются числом электронов во внешней электронной оболочке.
Коссель первым опубликовал вариант периодической системы Менделеева, в которой он, следуя Мозли, пронумеровал все клетки вплоть до урана, пометив прочерками места еще неизвестных в 1916 году элементов.
В том же 1916 году американский физико-химик Гилберт Ньютон Льюис (который в 1929 году введет в науке термин «фотон»), а затем в 1919 году Ирвинг Ленгмюр тоже американский физик и химик (получивший в 1932 году Нобелевскую премию по химии), связали последовательное заполнение электронных оболочек атомов с их химическими свойствами и расположением в клетках таблицы Менделеева. Затем Льюис сделал важный шаг, заметив связь устойчивости молекул с количеством электронов во внешних оболочках атомов, образующих молекулу. Для подавляющего числа устойчивых молекул суммарное количество электронов во внешних оболочках атомов, составляющих эти молекулы, является четным. Если это количество нечетно, то молекула обладает большой химической активностью, она стремится связаться с еще одним атомом или с другой молекулой, чтобы образовать соединение с четным суммарным числом электронов во внешних оболочках соединившихся атомов.
Это был период накопления опытных фактов и феноменологического (описательного) подхода к объяснению свойств атомов и их связи с периодическим законом Менделеева. Итог этому периоду подвел Бор в 1921 году в докладе «Строение атома в связи с химическими и физическими свойствами элементов».
Перечисление всех изложенных в докладе результатов заняло бы слишком много места. Все они направлены на выявление связи строения электронных оболочек атомов с их физическими и химическими свойствами. В частности, Бор подметил, что водород начинает, а гелий завершает первый период таблицы Менделеева. Далее идут периоды от лития до неона и от натрия до аргона, содержащие по 8 элементов, а два дальнейших периода — от калия до криптона и от рубидия до ксенона — содержат по 18 элементов.