И гость особенно заинтересовался главным направлением исследований кафедры, руководимой Хохловым, — нелинейными оптическими явлениями. Так называются разнообразные эффекты, возникающие, когда свойства вещества зависят от интенсивности действующего на него света. Как и в области радио, нелинейные явления в оптике становятся существенными только при очень больших электромагнитных полях. В долазерную эру оптики имели дело лишь с крайне слабыми полями, и для наблюдения нелинейных явлений приходилось создавать очень чувствительную аппаратуру.
Обсуждая эту ситуацию, академик Вавилов, введший в науку термин «нелинейная оптика», писал: «Физики настолько свыклись с линейностью обыденной оптики, что до сих пор нет даже формального строгого математического аппарата для решения реальных „нелинейных“ оптических задач».
С появлением лазеров, особенно лазеров с управляемой добротностью резонатора, дающих гигантские импульсы света мощностью в миллиарды ватт, нелинейные явления приобретают большое, иногда решающее значение не только для физики, но и для технических применений. Кстати, именно Хохлов со своим сотрудником С. А. Ахмановым написали первую монографию в этой области, суммировав и значительно развив в ней и теорию и математический аппарат, который имел в виду Вавилов. Эта монография, хорошо известная за рубежом, несомненно, была одной из причин интереса Таунса к работам ее авторов.
В предыдущих абзацах мы уже несколько раз применили выражение «нелинейные явления». Иногда совершенно невозможно избежать научных терминов. Однако специальные термины, в том числе и научные, вовсе не засоряют язык. Наоборот, они делают его проще, яснее и позволяют достичь краткости. Одно-два слова заменяют целую фразу, а иногда и несколько фраз.
Представим себе, например, график движения поезда, идущего с постоянной скоростью. Изображая путь, пройденный им за какое-нибудь время, мы получим прямую линию. Опуская слово «прямая», физик говорит о «линейном» законе движения, имея в виду, что пройденный путь пропорционален времени. Если же график изображает путь, пройденный свободно падающим камнем, то мы увидим на нем не прямую, а изогнутую линию. Не вдаваясь в подробности, не уточняя истинной формы этой кривой, физик говорит, что она не прямолинейна. Для краткости он говорит: она нелинейна. Это значит, что путь, пройденный падающим камнем, не пропорционален времени, он связан со временем нелинейной зависимостью.
В воздухе, стекле, воде, в большинстве известных сред путь, пройденный светом, пропорционален времени. Это значит, что скорость света в этих средах постоянна. Для большинства веществ это верно при всех достижимых интенсивностях света, даже для лучей оптических квантовых генераторов. Но есть небольшое количество кристаллов, в которых скорость света меняется в зависимости от его силы. Более того, эта зависимость изменяется, если меняется направление света по отношению к ребрам кристалла и его граням. Такой закон распространения света естественно назвать нелинейным. Иногда слово «нелинейный» относят к самому кристаллу, имея в виду, что закон распространения света в этом кристалле отличен от линейного.
В радиотехнике давно применяют нелинейные зависимости тока от напряжения, наблюдающиеся в радиолампах и полупроводниковых приборах для умножения частоты. Это значит, что, имея ламповый генератор какой-то определенной частоты, можно, не меняя ничего в генераторе, получить колебания с вдвое, или втрое, или даже вдесятеро большей частотой.
Естественно, что после создания оптических квантовых генераторов физики решили получить нечто подобное и в оптике. Ведь до сих пор мощные квантовые генераторы работают только на двух длинах волн — квантовые генераторы с ионами неодима дают инфракрасные волны длиной около одного микрона, и рубиновые генераторы с ионами хрома излучают красный свет длиной около 0,69 микрона. Между тем, удвоив частоту неодимового генератора, то есть уменьшив его волну вдвое — до 0,5 микрона, можно получить зеленый свет, а утроить его частоту — значит получить ультрафиолетовые лучи длиной в 0,33 микрона. И не какие-нибудь лучи, а почти идеальные! Лазер рождает лазер!
Аналогичный результат дает умножение частоты рубинового генератора.
Действительно, пропуская луч квантового генератора через специально выращенные кристаллы, Франкен и его сотрудники смогли зарегистрировать появление излучения удвоенной частоты. Однако коэффициент преобразования был очень мал. Лишь ничтожная доля энергии падающей волны превращалась в энергию волны удвоенной частоты.