Выбрать главу

Ничего не знал о нем и пятнадцатилетний сын немецкого стекольщика Иозеф Фраунгофер. В это время он работал учеником в зеркальной и стекольной мастерской, где никто и понятия не имел о спектрах. Через четыре года он перешел в крупную оптическую мастерскую, которая выпускала не только зеркала и люстры, но и бинокли, подзорные трубы и другие оптические приборы. Постепенно он стал лучшим мастером, а со временем и руководителем этого предприятия.

Задумав увеличить яркость изображения при наблюдении спектров, Фраунгофер соединил воедино зрительную трубу со щелевым спектроскопом Воластона и направил в свой прибор солнечные лучи. Прекрасный яркий спектр пересекали четкие темные линии… Фраунгофер убедился в том, что это не дефект прибора, а свойство солнечного света. Он подробно изучил расположение темных линий и затем использовал их для контроля качества своих спектроскопов. Однако механизм возникновения этих линий стал понятен лишь после изобретения спектрального анализа.

Прекрасные спектроскопы Фраунгофера завоевывали все большую популярность. Многие любовались чарующей симфонией света. Но «смотреть» не означает «видеть». По своему смыслу «видеть» гораздо ближе к «понимать».

Никто не может сказать, сколько человек, начиная с Ньютона, рассматривало всевозможные спектры. Несомненно, многие замечали, что окраска пламени связана с появлением в его спектре узких и ярких линий. Возможно, кто-нибудь заметил и то, что желтые линии, порождаемые поваренной солью, возникали и при внесении в пламя других солей натрия. Зеленые линии появлялись не только в присутствии металлической меди, но и при нагревании мельчайших крупинок медного купороса и других солей меди.

Только физик Кирхгоф и химик Бунзен поняли, что это не простое совпадение. Они увидели, что скрывается за яркими спектральными линиями.

Кирхгоф и Бунзен после длительных опытов и раздумий пришли к твердому выводу: каждый химический элемент характеризуется вполне определенным набором спектральных линий. Эти линии являются своеобразным паспортом химического элемента. Наблюдая их в спектроскоп, можно судить о наличии в веществе данного элемента.

Так родился спектральный анализ.

Теперь изучение спектров светящихся газов составляет лишь часть обширной области, известной под названием «спектральный анализ». Уже Кирхгоф расширил ее, использовав для анализа темные фраунгоферовы линии. Кирхгоф понял, что непрерывный спектр, излучаемый раскаленной поверхностью Солнца, частично поглощается более холодными газами солнечной атмосферы. Он сумел воспроизвести этот процесс в лаборатории. Этот поразительный по остроумию опыт заманчив своей простотой и доступностью. Его может повторить каждый при помощи обычной стеклянной призмы. Кирхгоф направил спектроскоп на пламя газовой горелки и ввел в это пламя крупинку поваренной соли. В спектроскопе сразу появились яркие желтые линии, характерные для атомов натрия. Достаточно убрать из пламени поваренную соль, и эти линии исчезают.

Затем Кирхгоф направил спектроскоп на ослепительный кратер вольтовой дуги. В спектроскопе возник яркий непрерывный спектр, чрезвычайно похожий на спектр Солнца, но без характерных фраунгоферовых линий. После этого Кирхгоф поместил между вольтовой дугой и спектроскопом газовую горелку — так, чтобы свет дуги перед тем, как попасть в спектроскоп, проходил через пламя. Вид спектра не изменился.

Теперь наступил решающий этап опыта. Кирхгоф вновь ввел в пламя горелки крупинку поваренной соли. Пламя окрасилось в ярко-желтый цвет. Что же при этом показал спектроскоп?

Не спешите сказать, что там появились яркие линии натрия. Ничего подобного. В тех местах, где они должны были появиться, яркий спектр вольтовой дуги пересекали темные линии. Это были впервые полученные в лаборатории спектральные линии поглощения — искусственные фраунгоферовы линии. Пары натрия, испаренного пламенем горелки, более холодным, чем кратер вольтовой дуги, поглощали часть света вольтовой дуги. Стоило погасить дугу, и эти темные линии превратились в яркие линии натрия. Как только Кирхгоф вновь зажег дугу, яркие натриевые линии снова стали темными провалами на фоне яркого спектра дуги.

Что же здесь происходит?

Голубое пламя газовой горелки имеет температуру около двух тысяч градусов, но входящие в него атомы водорода, углерода, азота и кислорода при этой температуре светятся очень слабо. Поэтому пламя горелки плохо видно и невооруженным глазом и в спектроскоп.

Поваренная соль в пламени частично распадается на атомы хлора и натрия. Атомы натрия при этой температуре светятся довольно ярко, испуская характерный желтый свет.