Выбрать главу

Центр положительных зарядов плазменной структуры перемещался по силовой линии поля (I ≈ 45°) в направлении земной поверхности. В гироскопе, с учетом данного факта, изменилась плоскость горизонта токопроводящей жидкости. Нормаль к поверхности поляризованной электролитической жидкости повернута в направлении центра положительных зарядов плазмоида. Воздушный пузырек жидкостного маятника сместился от линии вертикали самолета. Плоскость проводящей жидкости в гирогоризонте составляет с плоскостью истинного горизонта угол θ ≈ 45°. Ось гировертикали прибора направлена на центр положительных зарядов, когда самолет рейса 7К9268 пролетал под плазмоидом. Следуя ложным сигналам, Естественно, что с течением времени центр притяжения положительных зарядов плазмоида смещался ближе к поверхности земли. Если авиалайнер удалялся от центра, набирая высоту, угол θ стал > 45°. К увеличивающемуся углу прибавлялся и угол программного задания. Предложенная модель ГЭЦ и плазмоида объясняет причину не соблюдения ЛА траектории ортодромии и высокий угол кабрирования (θ ≈ +52°.).

9.5. Влияние электрического поля плазменной структуры на процессы горения углеводородов

Действию вешнего электрического поля подвержено: конструкции самолета, навигационное оборудование, керосин, его пары в топливных и дренажных баках; питьевая и техническая вода, продукты жизнедеятельности организмов людей и прочие не учтенные вещества. Электрическое поле вне самолета действует на атмосферу, плазму пламени, твердые и газообразные продукты, образовавшиеся при сгорании углеводородного топлива. Электрическое поле, приложенное к пламени, может оказывать заметное влияние на процесс горения и теплопередачу. Изменения характеристик пламени связывают [70] со следующими основными причинами:

– возникновение ионного ветра, под действием которого образуется поток нейтральных частиц в сторону отрицательного электрода;

– изменение скорости химических реакций за счет активации ряда частиц в зоне химического превращения;

– изменение скорости химических реакций за счет теплового нагрева газа.

Все это может приводить к изменению скорости горения, деформации формы пламени и влиять на устойчивость горения. При горении топливо и окислитель во фронте пламени находятся в ионизированном состоянии. Пламя представляет собой некоторую электрическую систему с распределенным пространственным зарядом. Электрическое поле действует на пламя сгорающих в воздухе органических веществ. Одним из способов управления пламенем стало применение электрического поля на стадии подготовки и в процессе сгорания топлива. При наложении электрического поля наблюдается изменение в конфигурации пламени и скорости горения. В поперечном электрическом поле происходило его отклонение к катоду, в продольном – уменьшение высоты пламени. Исследования выявили, что действие поля может как увеличить скорость горения, так и полностью погасить пламя. Если пламя разместить между электродами, создающего напряженность электрического поля между электродами, например 1–3 кВ/см, то ионизированные и разноименно заряженные продукты горения будут интенсивно притягиваться к электродам, имеющим противоположный знак заряда. В результате окислительно-восстановительная реакция во фронте пламени прекратится, а пламя погаснет [71].

Влияние электрического поля на пламя в 1924 – 1936 гг. изучали Малиновский А.Э. с сотрудниками. В своей первой работе (Malinovsky А. Е. J. de Chem. Phys., 1924, 24, 4.) он пропускал горящие пары бензина через поперечное электрическое поле, создаваемое конденсатором. При достижении в опытах некоторой напряженности поля происходило гашение пламени. В работе (А.Э. Малиновский, Ф.А. Лавров. О влиянии электрического поля на процессы горения в газах. ЖФХ. // 1931. Том 2, в. 3–4. С.530–534.) было показано, что пламена CH4, C2H2 и C2H4 в поперечном электрическом поле с потенциалом от 50 до 1800 В (при зазоре 4,85 мм) гасли. [72. С. 229].

Японский ученый И. Асакава, моделируя процесс истечения твердых частиц из сопла, выявил, что при наложении постоянного электрического поля происходит раскрытие угла струи от 0° (в условиях без поля) до 100° при потенциале 10 кв. Он исследовал процесс изменения высоты пламени под действием постоянных и переменных электрических полей. При увеличении потенциала до 15 кВ высота пламени уменьшалась вдвое. Было замечено ослабление напора в горелке. Результаты экспериментов И. Асакавы были проверены Денисовым, Кононовым и Степановым. Опытные наблюдения за изменениями процесса горения проводились до напряжения 100 кВ. Поверхность сопла, из которого вытекала струя частиц, соединяли с отрицательным потенциалом. С изменением напряжения до 60 кВ происходило увеличение угла раскрытия струи, наблюдалось запирание струи частиц при подаче напряжения 80 кВ и более [72. С. 222]. Наблюдения за изменением поведения пламени при сжигании бензина показали, что под действием электрического поля высота пламени уменьшалась при наложении электрического поля независимо от его направления. При наложении на горелку отрицательного потенциала (–36 кВ) высота пламени сокращалась в 5–6 раз; в случае положительного потенциала на горелке (+36 кВ) – сокращалось в 3–4 раза [72. С. 225]. Советские ученые Соколик А.С. и Скалов Б.С. [72. С. 232] при исследовании распространения углеводородных пламен (С2Н2 и С6Н6) в зависимости от роста потенциала поперечного электрического поля. установили тенденцию: в пламени, не имеющего воздействия поперечного поля, скорость распространения монотонно снижается (подавляется) в 3–4 раза, при изменении потенциала от 0 до 10 кВ.