В последнем выражении составного равенства произведём очевидную замену vt = x:
Таким образом, по прошествии времени t движущиеся со скоростью v часы удалятся на расстояние x и будут показывать время t', и мы получаем все классические уравнения преобразований Лоренца (два последних добавляем из очевидных соображений — движения только по оси X):
Последнее и самое загадочное из трёх известных основных следствий преобразований Лоренца — относительность одновременности выведем традиционным способом. Пусть на оси X в инерциальной системе K происходят два события в точках x1, x2 в один и тот же момент времени t. Отметим моменты совершения этих событий t'1, t'2 в системе K'. Согласно полученной формуле (5) находим:
Мы видим, что t'1 не равно t'2, то есть, два события, одновременные относительно K, оказываются разновременными относительно K'. Это расхождение во времени тем больше, чем далее отстоят друг от друга с точки зрения системы K места, где они произошли:
Итак, получив уравнения, в точности совпадающие с уравнениями преобразований Лоренца в СТО, мы показали, что преобразования Лоренца и основные следствия из них можно вывести, используя единственное предположение: скорость света "c" всегда одна и та же, независимо от того, движется ИСО или покоится. Следовательно, это предположение, постулат является единственным необходимым и достаточным условием для появления преобразований Лоренца и всех следствий из них. Поэтому есть достаточные основания считать, что математика кинематического раздела СТО является элементарной математической задачей для школьников старших классов вида "Из пункта А в пункт Б выехал поезд…".
Вывод СТО из принципа относительности
Выше было показано, что для вывода всех лоренц-следствий СТО достаточно одного (второго) постулата — о постоянстве скорости света. Но существует и противоположный подход: для получения этих же следствий достаточно другого (первого) постулата — принципа относительности (равноправия всех ИСО). Причём утверждается, что принцип постоянства скорости света вообще является излишним. Однако, в процессе вывода СТО из принципа относительности неизбежно появляется параметр, который играет в уравнениях Лоренца ту же роль, что и скорость света. То есть, принципы постоянства скорости света и относительности являются всё-таки взаимосвязанными.
Покажем это, воспользовавшись в немалой степени методикой С.Степанова [1]. Запишем результирующие уравнения преобразований времени и координаты между двумя инерциальными системами отсчета в следующем виде:
Задачу будем рассматривать как чисто математическую, идеализированную. Поэтому примем, что эти преобразования координат и времени являются линейными функциями:
Коэффициенты k, m, n, p являются функциями, зависящими от относительной скорости систем отсчёта v.
Будем считать, что в начальный момент времени t=t'=0 начала координат систем совпадают x=x'=0. Координата начала подвижной системы отсчета описывается уравнением x=vt. Подставляем x'=0 и x=vt в первое уравнение и получаем:
откуда находим:
Теперь подставляем x=0 и x'=vt в оба уравнения и получаем:
после упрощения:
и затем после подстановки из второго уравнения в первое и учетом (8) получаем:
Вставляем полученные соотношения в исходные уравнения (7):
Введём обозначения (подстановки):
Введённые параметры (подстановки) являются функциями скорости, но в дальнейшем для краткости мы будем записывать их без признака функциональности — без скобок с аргументом v. С учетом этих упрощений преобразования между системами отсчёта принимают окончательный вид: