Разумеется, двоичная система, используемая в ЭВМ, является той же самой системой, которую мы обсуждали в предыдущем параграфе, однако используемая терминология носит более технический оттенок. Двоичные цифры 0, 1 называются битами, что является сокращением английского выражения Binary digiTs (двоичные цифры). Так как существуют лишь две возможности: 0 и 1 в каждой позиции, то часто говорят об элементе с двумя состояниями.
Если следовать общему правилу, изложенному в § 2 этой главы, то представление данного числа в двоичной системе довольно просто. Например, возьмем N = 1971. Повторное деление на b = 2 дает
1971 = 985 • 2 + 1,
985 = 492 • 2 + 1,
492 = 246 • 2 + 0,
246 = 123 • 2 + 0,
123 = 61 • 2 + 1,
61 = 30 • 2 + 1,
30 = 15 • 2 + 0,
15 = 7 • 2 + 1,
7 = 3 • 2 + 1,
3 = 1 • 2 + 1,
1 = 0 • 2 + 1,
Следовательно,
197110 = (1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1)2.
Ранее мы отмечали, что в двоичной системе числа имеют более длинные выражения, следовательно, становится труднее с первого взгляда оценить величину числа. По этой причине в языке ЭВМ часто используется восьмеричная система счисления (с основанием 8). Это является лишь незначительным изменением двоичной системы, которое получается разбиением бит в числе на группы по три. Это можно представить себе как систему с основанием
b = 8 = 23.
Коэффициентами при этом являются восемь чисел
0 = 000, 4 = 100, 1 = 001, 5 = 101, 2 = 010, 6 = 110, 3 = 011, 7 = 111.
В качестве иллюстрации возьмем число 1971 из рассмотренного выше примера; в восьмеричной системе оно представляется как
1971 = 011, 110, 110, 011 = (3, 6, 6, 3)8.
Таким образом, этот способ записи незначительно отличается от предыдущего. В действительности, такое деление на группы нам хорошо знакомо по обычным десятичным числам: при записи и произнесении большого числа мы обычно делим его цифры на группы по три, например,
N = 89 747 321 924.
Таким образом, можно сказать, что это является представлением нашего числа при основании b = 1000= 103.
В компьютерах иногда используются и другие представления чисел. Предположим, что мы хотим записать десятичное число, скажем, N = 2947, в ЭВМ, работающей в двоичной системе. Тогда, вместо того чтобы полностью менять N на двоичное число, можно было бы изменить лишь цифры этого числа
2 = 0010,
9 = 1001,
4 = 0100,
7 = 0111
и, таким образом,
N = 0010, 1001, 0100, 0111.
Такие числа известны как кодированные десятичные числа. Этот метод иногда называется «системой 8421», так как эти десятичные цифры представляются в виде сумм двоичных единиц
0 = 0000, 1 = 0001, 2 = 0010,
22 = 4 = 0100, 23 = 8 = 1000.
Такие кодированные десятичные числа неудобны для всех видов вычислений, но не всегда целью ЭВМ являются вычисления. Тем же образом, любая буква алфавита или любой другой символ могут быть приписаны какому-нибудь двоичному числу. Это означает, что любое слово или предложение можно запоминать как двоичное число. Таким образом, если бы мы были соответствующим образом натренированы и имели бы дело со столь же подготовленной аудиторией, то могли бы общаться лишь с помощью бит.
Система задач 6.5.
1. Найдите двоичное представление чисел Ферма (§ 3, гл. 2)
2. Найдите двоичные представления четных совершенных чисел (§ 4, гл. 3)
§ 6. Игры с числами
Существует множество видов игр с числами, некоторые из которых были известны еще в средние века. Большинство из них не представляет интереса для теории чисел, скорее всего, они подобно магическим квадратам принадлежат к классу кроссвордов с числами. Некоторые из них проиллюстрируем примерами.
Перед вами телеграмма, посланная школьником домой, с настоятельной просьбой:
S E N D
M O R E
_________
M O N E Y[11]
Будем рассматривать эту схему, как сложение двух четырехзначных чисел SEND и MORE, в сумме дающих число MONEY. Каждая буква означает определенную цифру. Задача состоит в том, чтобы определить, какие это цифры. Так как всего 10 цифр, то в каждой такой задаче может фигурировать не более 10 букв, в этом примере 8. В идеальном случае задача должна иметь единственное решение.
В нашем примере очевидно, что M = 1, так как М — первая цифра либо суммы S + М, либо S + M+1, где S и М — числа, не превосходящие числа 9. Тогда для числа S имеются две возможности:
S = 9 или S = 8,
так как либо S + 1, либо S + 1 + 1 есть двузначное число. Установим сначала, что S не может быть цифрой 8, ибо, если бы S было 8, то должен был бы быть перенос из колонки сотен, что дает
S + M + 1 = 8 + 1 + 1 = 10
при сложении в колонке сотен. Следовательно, О должно было бы быть нулем и наше послание читалось бы так:
8 Е N D
1 0 R Е
_________