Выбрать главу

Аналогичным образом программа на основе технологий искусственного интеллекта может взять на себя функционал оценки регулирующего воздействия (ОРВ), которая проводится для целей государственного регулирования, определения возможных вариантов достижения целей, а также оценки связанных с ними позитивных и негативных эффектов [Клименко, Минченко, 2016]. При обеспечении сбора подробных цифровых данных об отрасли, подвергающейся регулированию, ИИ может просчитывать текущие и прогнозные ключевые экономические показатели государственной политики в отдельно взятой отрасли. При совершенствовании выбора решений на основе машинного обучения полученные прогнозы могут быть точнее, чем достаточно субъективные подходы, которые предлагаются отраслевыми экспертами. Тем не менее с учетом вероятностного расчета значений показателей с помощью ИИ полученные результаты также требуют контроля со стороны отраслевых экспертов и ответственных государственных служащих. Проведение ОРВ с привлечением функционала искусственного интеллекта существенно убыстряет процесс выработки и оценки альтернатив, которые возможны для совершенствования нормативно-правовой базы и основных показателей государственной политики в некоторой отрасли, а значит ИИ остается перспективной технологией для проведения ОРВ.

Осуществление государственной бюджетной и налоговой политики для стимулирования бизнеса также можно свести к задаче определения налогового режима и объема поддержки для различных компаний в зависимости от их финансово-экономических показателей, сравнимых с установленными эталонными. Обученные нейронные сети могут не только классифицировать компании по критериям для определения налогового режима и бюджетной поддержки, но позволяют уточнить эти критерии на основе проанализированного множества собираемых показателей о деятельности компаний.

Абсолютно аналогично решаются задачи осуществления лицензионной и разрешительной деятельности органов власти, которые сравнимы с задачей кредитного скоринга клиента в банке. Организация, деятельность которой подлежит лицензированию или требует получения разрешений, может быть в автоматическом режиме оценена нейросетью на основе ранее изученных аналогичных данных. В таком случае организация может быть автоматически классифицирована под положительное либо отрицательное решение о выдаче лицензии или разрешения. Окончательное решение может быть принято сотрудником-специалистом, однако подавляющая часть предварительных расчетов для определения параметров выдачи лицензии или разрешения может быть проведена программой на основе технологий ИИ.

Приведенный выше обзор возможностей ИИ, призванных помочь в решении разных классов задач в государственном управлении и в судебной системе, показывает неизбежность внедрения инновационных решений на основе машинного обучения в ближайшем будущем. Искусственный интеллект дает возможность сократить издержки при осуществлении государственных функций, увеличить скорость отклика на запросы граждан, повысить качество результатов взаимодействия органов власти с внешними акторами, а также перераспределить нагрузку на государственных служащих, избавив их от решения рутинных задач. При этом изложенные выше возможности ИИ демонстрируют позитивный эффект от его внедрения в деятельность органов власти. Однако деятельность органов государственной власти сопряжена с пристальным вниманием общественности, требованиями соблюдать прозрачность и подотчетность в принятии решений и представлении результатов. Если опорой деятельности для органов власти становится ИИ, то государству следует обеспечить важнейший аспект внедрения ИИ в операционную и стратегическую деятельность – этический.