тинности суждения (потому что, согласно четвертому условию, он не может быть убежден в чем-то и одновременно быть убежден в обратном). Так как он не убежден в том, что он в нем убежден, тогда это суждение не может быть истинным, ведь будь оно истинно, тогда, согласно Утверждению 2, он должен был бы быть убежден в том, что он убежден в истинности этого суждения. Но он не убежден в том, что он в нем убежден — и поэтому оно не может быть истинным. Таким образом, мы видим, что зазеркальный логик никогда не бывает убежден ни в одном истинном суждении; все суждения, в которых зазеркальный логик убежден — ложны.
Алисе понадобилось определенное время, чтобы усвоить сказанное.
— Это довольно сложное доказательство! — заметила она, наконец.
— Ничего, скоро освоишься! Алиса снова задумалась.
— А скажите мне вот что, — попросила она. — Зазеркальный логик должен быть убежден во всех ложных суждениях? Или же он просто убежден только в ложных суждениях?
— Это хороший вопрос, девочка, — ответил Шалтай-Болтай, — и ответ на него — «да». Возьми любое ложное суждение. Согласно пятому условию, он убежден либо в истинности этого суждения, либо в истинности противоположного ему суждения. Но он не может быть убежден в противоположном суждении, потому что противоположное суждение истинно! Соответственно, он убежден в истинности ложного суждения.
— Невероятно! — воскликнула Алиса. — Значит, зазеркальный логик убежден в истинности всех ложных суждений и не верит ни одному истинному суждению!
— Точно, — подтвердил Шалтай-Болтай, — и в этом вся прелесть!
— Еще один интересный момент, — добавил Шалтай-Болтай, — заключается в том, что любой, кто верит всем ложным суждениям и не верит ни одному истинному суждению и кто честно высказывает свои убеждения — любой такой человек должен соответствовать пяти основным условиям, характеризующим зазеркального логика.
— Это почему же? — спросила Алиса.
— О, это очень просто доказать! — ответил Шалтай-Болтай. — Предположим, человек абсолютно честен и одновременно убежден в истинности тех, и исключительно тех суждений, которые ложны. Поскольку он честен, то разумеется он отвечает первому условию. Что касается второго условия, предположим, он утверждает, что суждение истинно. Тогда он действительно убежден в истинности этого суждения (ведь он честен). Следовательно, ложно то, что он не убежден в истинности суждения. Но ведь он убежден во всем, что ложно — и даже в ложных суждениях о его собственных убеждениях! Стало быть, если ложно то, что он не убежден в истинности суждения, и если он убежден во всем, что ложно, тогда он должен быть убежден и в ложном факте, что он не убежден в истинности суждения — другими словами, он убежден в том, что он не убежден в истинности суждения. А раз он убежден в том, что он не убежден в истинности суждения, то он утверждает, что он в нем не убежден (потому что, как мы помним, он честен). Именно поэтому он удовлетворяет второму условию.
Что касается третьего условия, возьмем любое истинное суждение. Раз оно истинно, он не может быть убежден в его истинности. Раз он не убежден в его истинности, значит, он должен считать, что он убежден в его истинности (потому что все его убеждения ошибочны!). Далее, раз он считает, что он в нем убежден, то он должен это утверждать (опять же, потому что он честен). Это и доказывает то, что он отвечает третьему условию.
Ну, четвертое и пятое условия очевидны, — продолжал Шалтай-Болтай.— Рассмотрим любое суждение и противоположное ему суждение. Одно из них должно быть истинно, другое, соответственно, должно быть ложно. Естественно, он убежден в истинности ложного суждения и не убежден в истинности истинного суждения. Значит, он не убежден в истинности обоих суждений сразу и таким образом удовлетворяет четвертому условию, но убежден по крайней мере в одном из них и поэтому отвечает пятому условию.
— Вот и вся история, — подвел итог Шалтай-Болтай, — зазеркальный логик честен, просто он всегда заблуждается. И наоборот, любой, кто честен и постоянно заблуждается, отвечает всем пяти характеристикам зазеркального логика. Теперь ключ у тебя в руках.
— Кое-что мне все еще непонятно, — сказала Алиса. — Почему никогда не случается так, чтобы зазеркальный логик что-то утверждал, а потом утверждал что-то этому обратное, и при этом сплошь и рядом случается, что он объявляет какое-то суждение и обратное ему суждение истинными?