Выбрать главу

Рассуждая о завораживающем действии неожиданностей, таинственной привлекательности математики и, конечно же, других наук — физики в особенности — можно отметить кое-что еще. Как часто можно наблюдать в игре в шахматы, как слабый игрок или даже совсем еще начинающий вдруг вносит в игру сложный, удивительный расклад. Я нередко следил за игрой любителей или неспособных учеников и где-нибудь на пятнадцатом ходу замечал, что расклад, который у них получается — по-видимому, случайно и уж, конечно, не по задумке — сулит множество чудесных возможностей для каждого из игроков. Мне любопытно, как игра может сама создавать такие расклады, в которых столько привлекательности и искусности, делать это независимо от этих профанов, даже не подозревающих о том, что происходит. Не знаю, возможны ли аналогичные случаи в игре в го. Не слишком разбираясь в нюансах этой прелестной игры, я не могу судить об этом, но все-таки мне интересно, может ли профессионал по одному взгляду на расклад определить, получился ли он случайно или же благодаря логически развивающимся и обдуманным действиям игроков.

Кажется, что в науке, особенно в математике, существует похожий магический интерес — интерес к определенным алгоритмам. Такие алгоритмы способны сами давать решения задач или «открывать окна» новых перспектив. И то, что в начале казалось лишь инструментом для достижения частной цели, может в итоге повлечь какие-нибудь новые неожиданные и непредсказуемые применения.

Кстати, мне в голову пришла любопытная философская головоломка, и я не знаю, как ее решить. Рассмотрим игру солитер или же какую-нибудь игру между двумя игроками и допустим, что в ходе игры участники могут сжульничать один или два раза. Например, если в пасьянсе «Канфилд» поменять положение одной или двух карт один и только один раз, игра не нарушится. Она по-прежнему останется точной, полной, имеющей математический смысл, но станет другой игрой. Просто она станет чуть более насыщенной, более общей. Но если рассмотреть математическую систему и допустить одно или два ложных утверждения, результат немедленно станет бессмыслицей, потому что имея ложное утверждение можно вывести все, что душе угодно. В чем же кроется разница? Возможно, она кроется в том, что в игре допускается лишь один определенный класс действий, тогда как в математике лишь однажды введя неверное утверждение, можно получить такой вот вывод: ноль равен единице. Тогда, очевидно, должен существовать и способ обобщения математической игры, так чтоб можно было совершить несколько ошибок и вместо полной чепухи получить только более широкую систему.

Мы с Хокинсом размышляли над следующей связанной с этим задачей: вариация игры «Двадцать вопросов». Один человек задумывает число в интервале от единицы до одного миллиона (который как раз меньше, чем 220). Другому человеку позволяется задать до двадцати вопросов, на каждый из которых первый участник должен отвечать только «да» или «нет». Очевидно, что число можно угадать, если сначала спросить: это число в первой половине миллиона? В следующем вопросе опять ополовинить получившийся интервал чисел и так далее. В конечном итоге, число можно угадать менее чем за log2(1000000) раз. Предположим теперь, что участник имеет право солгать один или два раза. Сколько вопросов потребуется, чтобы получить верный ответ? Ясно, что для того, чтобы угадать одно из 2n чисел, требуется более n вопросов, поскольку о том, когда была сказана ложь, неизвестно. В общем виде эта задача не решена.

В своей книге о нерешенных задачах я утверждаю, что многие математические теоремы можно «payzise» (греческое слово, слово, которое значит «обыграть»). То есть их можно сформулировать на языке теории игр. Например, достаточно общую схему игры можно представить следующим образом:

Предположим, что N — данное целое число, а два игрока должны осуществить две перестановки N букв (n1, n2,…nN). Для этого два игрока действуют по очереди следующим образом. При первой перестановке первый игрок забирает букву n1, второй — n2, первый — n3 и так далее. В конце концов первая перестановка заканчивается. Затем они разыгрывают вторую перестановку и если две перестановки образуют группу всех перестановок, выигрывает первый игрок, в противном случае выигрывает второй. У кого в этой игре выигрывающая стратегия? Это лишь скромный пример того, как в любой области математики — в данном случае в теории конечных групп — можно придумать «игроподобные» схемы, которые приводят к чисто математическим задачам и теоремам. Можно задавать вопросы и другого рода, например: каковы шансы, если это делается наугад? В этом случае задача объединит в себе и теорию меры, и теорию вероятностей, и комбинаторику. Можно продолжать в таком духе и рассматривать многие области математики.