Выбрать главу

К концу девятнадцатого века теория множеств совершила переворот в математике. Все началось с того, что Георг Кантор доказал (вернее открыл), что континуум не является счетным множеством. Он не единственный размышлял о логике бесконечности — были еще его предшественники Вейерштрасс и Больцано, однако первое тщательное изучение степеней бесконечности было проведено, конечно, им. Оно возникло из изучения им тригонометрических рядов и, вобрав в себя аромат математики, быстро приняло математическую форму. Дух этой теории в значительной степени проник в математику; недавно она получила новое и технически совершенно неожиданное, обновленное развитие как в самой абстрактной форме, так и в форме непосредственных приложений. Нужно заметить, что формулировки топологии, алгебраических идей в самой общей форме получили импульс и направление от деятельности польской школы, которая в значительной степени была представлена во Львове, где интересы сконцентрировались, грубо говоря, вокруг функционального анализа в геометрическом и математическом смысле.

Можно привести следующее чрезмерно упрощенное описание того, что послужило началом этой деятельности. Начатый Кантором и математиками французской школы — Борелем, Лебегом и другими — этот род исследований прижился в Польше. В своей книге «Блестящие иммигранты» («Illustruous Immigrants») Лаура Ферми восхищенно удивляется тому, сколь многие из работавших в США польских математиков проделали так много важной работы для процветания этой области. Тех, кто приехал сюда, чтобы жить и продолжать эту работу, тоже было немало. Изучение анализа, одновременно проводимое Гильбертом и другими немецкими математиками, привело к появлению простой, общей математической структуры бесконечномерных функциональных пространств, которую впоследствии также развила польская школа. А независимая и одновременная работа Мура, Веблена и других ученых Америки сделала возможной встречу геометрических и алгебраических взглядов и объединение разных направлений математической деятельности, хотя, конечно, только в некоторой степени.

Такое чувство, что, несмотря на растущее разнообразие и даже «сверхспециализацию», выбор предметов для исследований в математике определяется широко распространенными общими течениями, линиями и тенденциями, идущими от независимых источников.

Несколько индивидуумов, располагающих несколькими определениями, могут разбудить целую лавину работы в специальных областях. Отчасти это обусловлено модой и стремлением увековечить себя исключительно под влиянием учителей. Когда я впервые приехал в эту страну, то поразился показавшейся мне чрезмерной сосредоточенности на топологии. Теперь мне кажется, что, возможно, слишком большая работа идет в области алгебраической геометрии.

Второй вехой стала работа Геделя, которую в недавнем времени сделали более специфичной результаты Пола Коэна. Гедель, математический логик из Принстонского института перспективных исследований, установил, что любая конечная система аксиом или даже счетно бесконечная их система в математике позволяет сформулировать внутри этой системы имеющие смысл утверждения, которые являются неразрешимыми — то есть внутри системы нельзя ни доказать, ни опровергнуть их истинность. Коэн открыл целый класс новых аксиом бесконечности. Сегодня существует масса результатов, свидетельствующих о том, что наша интуиция, благодаря которой мы понимаем бесконечность, не обладает полнотой. Они позволяют раскрыть таинственные области нашей интуиции для понимания разных концепций бесконечности. Это, в свою очередь, оказывает косвенное влияние на изменение философии математического фундамента, показывая, что математика — это вовсе не законченный предмет, основанный на неизменных, уникальным образом подобранных законах, как было принято считать раньше, а генетически развивающаяся наука. Эту точку зрения еще не приняли сознательно, а ведь она указывает путь к иным перспективам. Математики изучают бесконечность воистину плодотворно, так что можно ли знать, как изменится наше отношение к этому понятию за следующие пятьдесят лет?

Конечно, что-то появится — если не аксиомы в настоящем смысле этого слова, то правила или договоренности между математиками, которые допустят новые постулаты или, назовем их лучше, формулированными пожеланиями, выражающими абсолютную свободу мысли, свободу конструкции, когда есть неразрешимые утверждения в предпочтение верным или ложным допущениям. Некоторые утверждения могут в самом деле быть неразрешимо неразрешенными. Это должно представлять огромный философский интерес.