В другом эксперименте в промежутках между замерами пили кофе. По-видимому, курильщики вместе с напитком проглатывали большую часть клеток эпителия. Число выдыхаемых ими частиц сократилось, но и спустя 63 минуты все же была видна существенная разница в замерах для заядлого курильщика и некурящего. Даже когда некурящий съел 12 крекеров, количество выдыхаемых им частиц не увеличилось.
Правда, экспериментатор нашел довольно простое решение, как частично нейтрализовать курильщика: дать ему выпить стакан воды, прежде чем он вернется в цех.
Эти данные еще раз подтверждают, что находиться рядом с курящим далеко не безвредно. Курильщика можно уподобить микровулкану никотиновой пыли.
Что только не делают, чтобы избавиться от пыли. Изолируют помещение от внешней среды, рабочие облачаются в белоснежные халаты, маски и перчатки, причем из «непылящих» материалов (на поверку вышло, что самая гигиеничная одежда, из хлопчатобумажных тканей, сильно пылит). В течение часа воздух в рабочем помещении сменяется несколько сот раз.
Однако для изготовления схем с толщиной линии в доли микрометра даже такие цехи покажутся безнадежно грязными. Для их производства в одном кубометре допускается не более 10 частиц размером 0,2 микрометра. Такой степени обеспыленности можно достичь только в герметичных камерах с особым микроклиматом в атмосфере инертного газа. Присутствие человека в производственной зоне, конечно, исключается.
Пожалуй, одна из самых больших трудностей состоит в том, как отпечатать запутанные тончайшие схемы из миллионов элементов на полупроводниковую пластинку. Причем процесс печати повторяется не единожды, и каждый раз надо точно совмещать новую «картинку» с предыдущей. Самое крошечное несовпадение, и — брак. Схема работать не будет.
При толщине линии 1—2 микрометра схема отпечатывается на кристалле с помощью ультрафиолетовых лучей. При более тонких, субмикронных линиях копирование исходного оригинала под силу лишь рентгеновским лучам и сфокусированным пучкам электронов.
Чтобы создать чип, надо его спроектировать, изготовить и испытать. Эти задачи уже вышли за рамки человеческих возможностей. Разместить несколько миллионов деталей на крохотной полупроводниковой пластине — с такой задачей может справиться только компьютер. А под силу ли человеку проверить десятки, сотни тысяч схем в чипе? Тоже без компьютера не обойтись. В общем, наступает пора, предсказанная фантастами: чипы начнут производить себе подобных. Возникает естественный вопрос; где же предел малости? Где предел интеграции схем? А бели конкретнее — сколько все-таки можно будет разместить транзистор0в на одном кристалле?
Грубую оценку можно дать, разделив наибольший практический размер кристалла на наименьший практический размер транзистора.
Чтобы транзистор устойчиво работал, число подвижных электрических зарядов в его кристалле должно быть не менее определенной величины. При меньшем числе зарядов он просто не сможет нормально выполнять свои функции по обработке информации на тех физических принципах, которые приняты в современной вычислительной технике.
Подвижными зарядами в транзисторе являются атомы примеси. Обычно один атом примеси дает один подвижный заряд. Чтобы число этих зарядов, например в кремниевом транзисторе, было достаточным, его линейный размер должен быть не менее 400 постоянных кристаллической решетки. (Постоянная кристаллической решетки — это линейный размер элементарной ячейки кристалла.) На практике приходится учитывать целый ряд других факторов, поэтому размер транзистора увеличивается еще в три раза. У кремния постоянная решетка равна 5,4∙10—8 сантиметра. Если умножим ее значение на 400, а затем еще на три, получим, что минимальный линейный размер транзистора равен примерно одному микрометру, а его площадь соответственно одному квадратному микрометру, или 10—8 квадратных сантиметра.
Предельный размер кристалла самого чипа определяется экономическими соображениями. Кристаллы нарезаются из одной пластины большого размера. В свою очередь, эта пластина, одна из многих десятков тонких пластин, на которые разрезан цилиндр монокристаллического кремния. Современная технология позволяет выращивать кристаллы кремния диаметром до 15 сантиметров, а в ближайшем будущем, возможно, удастся получать кристаллы диаметром до 20 сантиметров.