Выбрать главу

В большой пластине кремния неизбежно где-то есть микроскопические дефекты, и внутри и на поверхности. Чем на более крупные квадратики разрезается круглая пластина, тем больше вероятность того, что в исходную пластину для чипа попадет микродефект. В настоящее время считается, что нарезать кристаллы площадью более одного квадратного сантиметра неэкономно. Но специалисты надеются, что со временем предельная площадь кристалла увеличится до 10 квадратных сантиметров.

Сколько же транзисторов можно расположить на пластине такого размера? К сожалению, большая ее часть (90 процентов) пойдет на соединения элементов схемы и изоляцию их друг от друга. И только около одного квадратного сантиметра может быть заполнено транзисторами. Если каждый транзистор будет занимать площадь примерно 10—8 квадратного сантиметра, то на одном кристалле уместится 100 миллионов транзисторов. Если учесть, что современные чипы уже содержат два миллиона транзисторов, то их сложность может быть увеличена в 50 раз, прежде чем кремниевая технология исчерпает себя.

При нынешних темпах научно-технического прогресса этот рубеж будет достигнут за десятилетие. Тогда один такой суперчип сможет выполнять всю работу сегодняшних стационарных ЭВМ. По имеющимся оценкам, мировой объем изделий электронной промышленности в настоящее время превышает 200 миллиардов долларов, что приблизительно равно объему валового национального продукта такой страны, как Индия. Не так уж и мало, если учесть, что она по этому показателю возглавляет вторую десятку государств. К концу нынешнего столетия объем продажи составит примерно один триллион долларов. Так что в перспективах электронной промышленности сомневаться не приходится.

Инженеры сейчас всерьез размышляют над тем, что еще недавно проходило по ведомству научной фантастики. Например, как уместить музыкальный синтезатор, способный играть за целый оркестр, в одном кристалле. Полагают, что в недалеком будущем появится «кремниевый секретарь», который сумеет говорить и понимать речь, составлять телеграммы, назначать совещания и в вежливой форме напоминать о делах. А к концу века ожидаются и личные роботы.

Уже сейчас начинается революция в телевидении. Передача сигналов в цифровом коде — метод, который при использовании суперсхем станет дешевым, обеспечит качество изображения, значительно превосходящее нынешнее. Появятся телевизоры, способные хранить понравившиеся передачи в своих запоминающихся устройствах на суперчипах.

Правда, мешает использование чипа в качестве долговременной памяти пока одно «но», которое не всегда удается обойти.

При выключении питания записанная информация пропадает, поэтому на них постоянно надо подавать питание. Но крошки-чипы потребляют не так уж и много, так что в стационарных условиях с этим недостатком можно примириться.

Пожалуй, не найти радиотехнических систем, которых не коснется «чипизация». Радары не столь уж далекого будущего, например, будут состоять лишь из антенны, которая опять же будет исполнена в виде множества интегральных СВЧ-микросхем (антенны такого типа называются фазированными антенными решетками, или сокращенно ФАР) и миниатюрной ЭВМ на суперчипе.

А остановится ли электроника на суперчипах? Какие пути ее развития намечаются уже сейчас, в наше время?

ЭЛЕКТРОНИКА ЧЕТВЕРТОГО ПОКОЛЕНИЯ

Как мы видели, начиная с 1960-х годов, момента старта интегральной электроники, инженеры и технологи словно втянулись в марафонскую гонку: кто быстрее уменьшит в размере транзисторы и плотнее разместит их в одном чипе. Принцип был один: изготовить уже известную схему, только в меньшем масштабе, соответственно уменьшив напряжение питания.

При всей своей прогрессивности и достоинствах сама идея интегральной электроники не несла в себе ничего принципиально нового. Это был все тот же схемотехнический путь, то есть известные схемы, которые работали на дискретных полупроводниках, воспроизводились на кристалле кремния. Конечно, не обошлось и без взаимного влияния.

Само развитие интегральной технологии открывало новые возможности, рождались новые типы транзисторов, что, безусловно, отразилось и на принципах построения схем. Но все равно это путь безудержного роста числа элементов в микросхеме по мере усложнения выполняемых ею функций.

И вот виден финиш марафона — известны те пределы, до которых может быть уменьшен транзистор.

Хотя, чтобы дойти до финиша, надо преодолеть еще много преград. Но специалисты сходятся во мнении, что работать с линией тоньше, чем 0,1 микрометра, видимо, нет смысла. При таких размерах знакомые материалы ведут себя странно. Например, тончайшие полоски алюминия, которые соединяют транзисторы, извиваются как змеи, когда по ним проходят электроны. В этом тонком мире действуют уже и другие законы, и вполне вероятно, что там нас ждут неожиданные открытия.