Выбрать главу

б) для старшей группы цифр, образующей число 27, подберем такую цифру, чтобы ее квадрат был наибольшим, но не превосходил числа 27; такой цифрой будет 5, ее и запишем в качестве первой цифры ответа;

в) из старшей группы цифр вычтем найденный в предыдущем пункте квадрат первой цифры ответа и к полученной разности (остатку) 27 - 25 = 2 припишем справа (снесем) следующую группу цифр 35; получим число 235;

г) удвоив записанное в ответе число 5, припишем справа такую цифру, чтобы произведение полученного в результате числа на эту цифру было наибольшим, но не превосходило числа 235; такой цифрой будет 2 (ибо 102*2 = 204≤235, но 103*3 = 309>235), ее и запишем в качестве второй цифры ответа;

д) из числа 235 вычтем найденное в предыдущем пункте произведение 204 и к остатку 31 снесем следующую группу цифр 29; получим число 3129;

е) удвоив записанное в ответе число 52, припишем справа такую цифру, чтобы произведение полученного в результате числа на эту цифру было наибольшим, но не превосходило числа 3129; такой цифрой будет 3 (ибо 1043*3 = 3129), ее и запишем в качестве третьей цифры ответа;

ж) разность между снесенным числом 3129 и полученным в предыдущем пункте произведением равна 0, поэтому корень квадратный из числа 273 529 извлекается нацело и равен записанному в ответе числу 523.

Приведите обоснование предложенному алгоритму и найдите с его помощью корень

3.10. Где остановиться? Объясните, как следует поступать в случае, если предложенный в задаче 3.9 алгоритм в применении к данному числу не заканчивается ни на каком шаге, т. е. не наступает ситуация, описанная в п. ж) задачи 3.9. Докажите, что предложенный алгоритм позволяет и в этом случае находить значение корня квадратного с любой наперед заданной точностью. Найдите приближенное значение с точностью до

3.11. Приближенная формула корня квадратного Найдя какое-нибудь, пусть даже совсем грубое, приближенное значение х>0 корня квадратного из данного числа а = х2 + b, мы можем значительно улучшить приближение с помощью формулы

Докажите, что погрешность полученного приближения будет удовлетворять оценкам

Какое значение для даст приведенная формула, если в качестве грубого приближения взять целую часть этого корня, а именно число х = 2?

3.12. Способ Герона Выберем какое-либо приближение х0 корня квадратного из данного числа а (например, х0 = а) и будем последовательно улучшать приближения по формулам

и т. д. Докажите, что погрешности (для приближений числами последовательности хn) удовлетворяют оценкам

Проверьте, что этот способ сводится к многократному применению приближенной формулы корня квадратного (см. задачу 3.11). Найдите с помощью способа Герона приближенное значение , взяв х0 = 2 и проделав два шага. Оцените точность найденного приближения.

3.13. Почти удвоение точности Пусть после вычисления первых n значащих цифр корня квадратного из данного числа а (например, с помощью алгоритма задачи 3.9) в ответе получилось приближенное значение х и остаток b = а - х2. Объясните, почему приближение задает в дополнение к п первым знакам еще по меньшей мере n-1 верных знаков корня. Пользуясь вычислениями задачи 3.10, найдите приближенное значение с точностью до

3.14. Приближенная формула корня кубического Найдя какое-нибудь приближение x>0 корня кубического из данного числа а = х2 + b, можно значительно улучшить приближение с помощью формулы

Оцените при b>0 погрешность полученного приближения, рассмотрев отдельно случай, когда число х представляет собой целую часть искомого корня. Найдите приближенное значение по указанной формуле, оценив погрешность.

Решения

3.1. Пусть число а содержит в десятичной записи m знаков до запятой. Тогда справедливы оценки

из которых следует, что квадрат числа а имеет либо 2m, либо 2m-1 знаков до запятой, так как

Поэтому если данное число имеет четное число n = 2m знаков или нечетное число n = 2m-1 знаков до запятой, то корень квадратный из него имеет m знаков до запятой.