Подставляя в первую строчку вместо дроби а2/а3 ее выражение из второй строчки, находим
Подставляя сюда вместо дроби а3/а4 ее выражение из третьей строчки, имеем
Производя аналогичные подстановки и далее, из предпоследней строчки получим равенство
в котором останется лишь подставить вместо дроби ее значение qn из последней строчки, после чего выражение будет удовлетворять всем требованиям задачи: все числа q2, q3, ..., qn являются натуральными, так как а2>а3>...>an-1>an>an+1, а число q1 является целым (если a1≥a2, то натуральным, а если а1<а2, то нулевым).
5.8.
5.9. Последовательные операции по свертыванию цепной дроби сводятся к операциям двух типов: сложение и деление . Докажем, что если a/b несократимая дробь, то в результате операции любого из указанных двух типов получается также несократимая дробь. Действительно, операция первого типа приводит к дроби , числитель и знаменатель которой не имеют общих делителей, поскольку (см. решение задачи 5.2) справедливы равенства (qb + a, b) = (b, a) = 1. Операция второго типа приводит к дроби b/a которая также несократима, ибо (a, b) = (b, а) = 1. Таким образом, раз дробь 1/qn несократима, то на каждом шагу, в том числе и на последнем, при свертывании цепной дроби мы получаем несократимую дробь.
Например, для заданной в задаче сократимой дроби имеем
5.10. Для дроби
имеем следующие подходящие дроби:
5.11. Решение этой задачи может показаться на первый взгляд совсем очевидным, поскольку для любой дроби a/b можно сначала соединить параллельно b единичных сопротивлений, получив сопротивление, равное 1/b, а затем размножить эту схему в а экземплярах, соединив их последовательно. При этом в конечном счете нам понадобится а*b единичных сопротивлений. Например, для такого решения п. а) их нужно 7*2 = 14 штук, а для решения п. б) -10*7 = 70 штук. Как показывает приводимое ниже решение, этот очевидный способ далеко не самый экономный: в п. а) достаточно иметь всего 5, а в п. б) - 6 сопротивлений.
Рис. 6
а) Соединив параллельно два единичных сопротивления, получим сопротивление 1/2. Присоединив к нему последовательно еще три единичных сопротивления, мы получим сопротивление (рис. 6).
б) С учетом разложения требуемое сопротивление можно получить следующим образом: соединим последовательно одно единичное сопротивление и блок, в котором параллельно соединены три сопротивления - два единичных и блок из трех последовательных единичных сопротивлений (рис. 7). Тогда сопротивление второго блока будет равно 3, а первого - будет равно Общее же сопротивление как раз и будет составлять 10/7.
Рис. 7
в) Пусть дробь a/b разложена в цепную дробь (см. задачу 5.7)
Тогда соединим последовательно q1 единичных сопротивлений и первый блок, в котором соединим параллельно q2 единичных сопротивлений и второй блок, в котором соединим последовательно q3 единичных сопротивлений и третий блок и т. д. Так, чередуя последовательное и параллельное соединения при составлении каждого последующего блока, мы на предпоследнем шаге соединим последовательно или параллельно qn-1 единичных сопротивлений и (n-1)-й блок, в котором соединим, наоборот, параллельно или последовательно qn единичных сопротивлений. Всего нам понадобится q1 + q2 + ... + qn сопротивлений, что, как правило, меньше, чем a*b.
Докажем, что полученная схема имеет сопротивление a/b. Если мы временно отсоединим от цепи весь первый блок, то сопротивление будет равно q1, т. е. первой подходящей дроби к данной цепной дроби. Если временно отсоединим от цепи не первый, а второй блок, то сопротивление неполного первого блока будет равно 1/q2 и общее сопротивление будет равно т. е. второй подходящей дроби. Если отсоединим от цепи не второй, а третий блок, то сопротивление неполного второго блока будет равно q3, первого -