6.10. Задача сводится к решению уравнения
0,7x + 0,9y = 20,5
в целых неотрицательных числах (x и y - количество банок по 0,7 и 0,9 л соответственно). Преобразуем уравнение к виду
7x + 9y = 205,
а затем, делая последовательные замены переменных в левой части, получим равенства
где x + y = u, y + 3u = v. Из этих равенств имеем
Подставляя u = 88, 89, 90, 91, получаем четыре решения:
Наименьшая сумма x + y = 23 достигается при последнем решении, которое, следовательно, требует наименьшего
количества банок.
6.11. Из равенства, сформулированного в п. б) задачи 5.12, при k = n получаем
где - последняя подходящая дробь к цепной дроби, в которую раскладывается дробь a/b. Так как дроби - несократимы (см. задачу 5.9), то Pn = а, Qn = b и
Умножая обе части последнего равенства на (-1)n, имеем
т. е. пара чисел является решением уравнения ax + by = с.
6.12. Обозначая через x и y количества контейнеров по 170 и 190 кг соответственно, получаем после сокращения на 10 уравнение
17x + 19y = 300
в целых неотрицательных числах. Для нахождения частного решения воспользуемся методом задачи 6.11, разложив дробь 17/19 в цепную дробь
(число n получилось равным 4) и свернув предпоследнюю подходящую к ней дробь в обыкновенную
Итак, частное решение расходного уравнения имеет вид
а общее задается формулой
откуда получаем условия на параметр k
т. е. k = 142, x = 2, y = 14.
6.13. После замены переменной x' = -x (см. задачу 6.6) получаем уравнение
8x' + 13y = 11
в натуральных числах, которое решим методами, предложенными в задачах 6.8 и 6.11: предпоследняя подходящая дробь к цепной дроби
равна
откуда
т. е. что невозможно. Итак, на прямой 8x - 13y + 11 = 0 нет ни одной точки с целочисленными координатами, удовлетворяющими условиям х<0 и y>0.
6.14. Так как гирьки и банки можно класть на любую чашку весов, то числа x и y (гирек и банок соответственно) удовлетворяют уравнению
100x + 450y = 2500
в целых числах (отрицательное значение какой-либо неизвестной означает, что соответствующие предметы лежат на одной чашке с сахарным песком). Приведем уравнение к виду
2x + 9y = 50
и заметим, что числа y0 = 0, x0 = 25 дают частное решение. Поэтому общее решение имеет вид (см. задачу 6.8)
x = 25 + 9k, y = -2k.
Докажем, что наименьшее количество гирек и банок, требуемое для взвешивания, равно 8. Действительно, если гирьки и банки лежат на одной чашке весов, то x≥0, y≥0 и -3<-25/9≤k≤0, причем наименьшая сумма x + y = 25 + 7k = 11 достигается при k = -2. Если гирьки лежат на одной чашке весов, а банки и сахар на другой, то x≥0, y≤0 и k≥0, причем наименьшая сумма x + (-y) = 25 + 11k = 25 достигается при k = 0. Если же банки лежат на одной чашке весов, а гирьки и сахар на другой, то x≤0, y≥0 и k≤-25/9<-2, причем наименьшая сумма (-x) + y = -25 - 11k = 8 достигается при k = -3. Таким образом, продавец должен на одну чашку весов положить 6 банок, а на другую - 2 гирьки и взвешиваемый сахар. Весы уравновесятся, если сахара будет 2,5 кг.
§ 7. Пифагоровы тройки
Важный пример диофантова уравнения дает теорема Пифагора, связывающая длины x и y катетов прямоугольного треугольника с длиной z его гипотенузы:
x2 + y2 = z2.
Вы, конечно, встречали одно из замечательных решений этого уравнения в натуральных числах, а именно пифагорову тройку чисел x = 3, y = 4, z = 5. Есть ли еще такие тройки?
Оказывается пифагоровых троек бесконечно много и все они давным-давно найдены. Они могут быть получены по известным формулам, о которых вы узнаете из настоящего параграфа.
Если диофантовы уравнения первой и второй степени уже решены, то вопрос о решении уравнений более высоких степеней до сих пор остается открытым, несмотря на усилия крупнейших математиков. В настоящее время, например, еще окончательно не доказана и не опровергнута знаменитая гипотеза Ферма о том, что при любом целом значении n 2 уравнение