Рис. 22
11.6. Обозначим через А, В и С три данных населенных пункта. Если искомая магистраль может проходить так, чтобы все три точки лежали по одну сторону относительно магистрали (в том числе и на ней самой) и к тому же на равном расстоянии от нее, то точки A, В и С лежат на одной прямой, параллельной магистрали. В этом случае расстояние минимально, когда магистраль проходит через эти точки.
Рис. 23
В противном случае две из данных точек, скажем A и В, должны лежать по одну сторону от искомой магистрали, а третья - по другую (рис. 23). Так как магистраль равноудалена от точек A и С, то она проходит через середину отрезка АС (см. решение задачи 11.5), а так как она равноудалена от точек В и С, то проходит и через середину отрезка ВС. Таким образом, мы доказали, что искомая магистраль проходит по одной из трех средних линий треугольника ABC.
Среди возможных расположений магистрали наименьшее расстояние до точек А, В и С, равное половине наименьшей высоты треугольника ABC, достигается, когда магистраль параллельна наибольшей стороне этого треугольника (точнее, какой-нибудь из наибольших сторон, если их несколько), поскольку наименьшая высота в треугольнике соответствует наибольшей стороне - ведь их произведение есть константа, равная удвоенной площади треугольника.
11.7. Проведем прямую через точку A пересечения магистрали с каналом и через данный населенный пункт В. Рассмотрим точку С на этой прямой, удаленную от точки В на расстояние АВ (рис. 24). Тогда если искомая дорога пересекает магистраль и канал в точках D и Е соответственно, то точка В есть центр симметрии четырехугольника ADCE, который, стало быть, является параллелограммом. Теперь сами точки D и Е можно найти, проведя через точку С прямые, параллельные каналу и магистрали, до пересечения их соответственно с магистралью (в точке D) и с каналом (в точке E).
Рис. 24
11.8. Из точки А пересечения железной дороги с каналом через данный населенный пункт В проведем луч. Опустим из какой-либо точки О железной дороги перпендикуляр ОС к каналу и найдем на луче А В точки, удаленные от точки О на расстояние ОС. Таких точек окажется две - это будут точки D и У, лежащие на окружности с центром О и радиусом ОС. Для определенности будем считать, что DA>EA (рис. 25). Проведем отрезки BF и BG, соединяющие точку В с точками F и G на железной дороге и параллельные отрезкам DO и ЕО соответственно. Тогда из подобия соответствующих треугольников будет следовать, что точки F и G равноудалены от канала и от точки В, т. е. они укажут искомые места расположения полустанка. Никаких других возможностей для расположения полустанка нет, поскольку для любой искомой точки существует преобразование гомотетии относительно точки A, переводящее искомую точку в точку О, а точку В в точку луча АВ, удаленную от точки О на расстояние ОС, т. е. в одну из точек D или Е.
Рис. 25
Минимальное расстояние до полустанка достигается в точке F, для которой имеем
ибо DO = EO и DA>EA.
11.9. Найдем точку О, в которой должен находиться центр пруда. Поскольку точка О равноудалена от двух данных магистралей, то она лежит на биссектрисе угла между ними. Таким образом, задача сводится к нахождению на данной прямой l - биссектрисе - точки О, равноудаленной от данной точки А - населенного пункта - и от другой данной прямой - той из магистралей, которая образует с прямой l угол, содержащий точку А (этот угол будет обязательно острым, так как он равен половине угла между магистралями). Такая ситуация разобрана в решении задачи 11.8.
11.10. Найдем точку О, в которой должен находиться центр пруда, Поскольку точка О равноудалена от двух данных населенных пунктов A и В, то она лежит на серединном перпендикуляре к отрезку АВ (рис. 26). Таким образом, задача сводится к нахождению на данной прямой h (перпендикуляре) точки О, равноудаленной от точки A или точки В и от другой данной прямой l (магистрали). Если прямые h и l не параллельны и не перпендикулярны, то они в пересечении образуют острый угол, внутри которого расположена одна из точек A и В (ведь обе эти точки лежат по одну сторону от прямой l). Способ нахождения точки О в этом случае указан в решении задачи 11.8. Если прямые h и l перпендикулярны, то точка О должна быть равноудалена от точки их пересечения и от точки A, и этот случай также был разобран в решении задачи 11.1. Наконец, если прямые h и l параллельны, то точка О должна быть удалена от точки A на расстояние, равное расстоянию d между прямыми h и L Поэтому искомая точка лежит на пересечении прямой h и окружности с центром A и радиусом d (таких точек пересечения будет две, поскольку расстояние от точки A до прямой к меньше d - ведь одна из точек A или В расположена между прямыми h и l).