12.16. Кратчайший замкнутый маршрут Три магистрали, пересекаясь, образуют остроугольный треугольник. Как проложить кратчайший маршрут автобуса, имеющий выезды к каждой из трех магистралей?
12.17. С наименьшей суммой расстояний Три населенных пункта расположены в вершинах остроугольного треугольника. Где нужно построить завод, чтобы сумма расстояний от него до всех трех данных пунктов была наименьшей?
12.18. Проселочная дорога Через город проходит магистраль, на некотором расстоянии от которой находится населенный пункт. Требуется соединить проселочной дорогой магистраль с пунктом так, чтобы в итоге время проезда из города в этот пункт было наименьшим. От какой точки магистрали нужно отвести дорогу, если известно, что скорость транспорта по проселочной дороге в k раз меньше, чем по магистрали?
Решения
12.1. Кратчайший маршрут катера совпадет с хордой АВ, перпендикулярной радиусу ОС, проходящему через островок D (если островок находится в центре круга, то все маршруты будут иметь одинаковую длину; поэтому мы рассмотрим здесь случай, когда D не совпадает с О, изображенный на рис. 27). Для доказательства этого утверждения проведем через точку D еще какую-либо хорду EF и проверим, что EF>AB. Действительно, перпендикуляр OG к хорде EF имеет меньшую длину, чем наклонная OD к этой хорде. Следовательно, EG>AD (так как в прямоугольных треугольниках OEG и OBD одинаковые гипотенузы ОЕ = ОВ, но разные катеты OG<OD), а значит, EF = 2EG>2DB = AB, т. е. хорда АВ короче любой другой хорды, проходящей через точку!).
Рис. 27
12.2. Завод нужно построить в точке Е пересечения диагоналей четырехугольника ABCD с вершинами в данных населенных пунктах (рис. 28). Докажем, что сумма расстояний от всех четырех пунктов А, В, С, D до любой точки F больше, чем до точки Е. Действительно, складывая неравенства
получаем неравенство AC + BD≤AF + BF + CF + DF, в котором равенство возможно только в случае, когда точка F лежит на обеих диагоналях АС и BD, т. е. когда F совпадает с Е. Именно это и требовалось доказать.
Рис. 28
12.3. Киоск нужно установить в любой точке, по обе стороны от которой расположено одинаковое количество домов (рис. 29). Если общее число домов нечетно, а сами дома находятся, скажем, в точках А1, А2, ..., Ak, О, Bk, ..., В2, B1, то киоск нужно поставить у дома О. Если же общее число домов четно, а сами дома находятся в точках А1, А2, ..., Ak, Bk, ..., В2, B1, то киоск можно поставить в любой точке О между домами Ak и Bk. Действительно, общая сумма расстояний от киоска до всех домов складывается из расстояния от киоска до среднего дома О (если таковой имеется) и сумм расстояний от киоска до каждой пары домов Ai и Bi, где i = 1, ..., k. При этом любая из указанных сумм не превосходит соответственно величины AiBi а равна ей тогда и только тогда, когда киоск находится между домами Ai, Bi. Таким образом, необходимым и достаточным условием минимальности общей суммы является принадлежность точки установки киоска каждому из отрезков А1В1, A2В2, ..., AkBk и, кроме того, совпадение этой точки с точкой О среднего дома, если число домов нечетно.
Рис. 29
12.4. Школу следует построить в том из населенных пунктов А или В, в котором живет больше детей. Действительно, пусть для определенности таким пунктом является пункт А. Тогда если школа расположена в некоторой точке О, то затраты на перевозку детей пропорциональны величине
которая не может быть меньше, чем b*АВ, так как а>b, ОА≥0 и ОА + ОВ≥АВ. С другой стороны, указанная величина принимает как раз значение b*АВ, но только в единственном случае - когда точка О совпадает с точкой А.
12.5. Один из двух населенных пунктов А или В, например В, отразим симметрично относительно канала (точнее, относительно его ближайшего берега). Если мы соединим отрезком полученную точку С с точкой A, то точка D пересечения этого отрезка с каналом и будет искомой точкой расположения водонапорной башни (рис. 30). В самом деле, для любой другой точки Е на том же берегу канала суммарная длина труб до точек A и В будет равна суммарной длине труб до точек A и С (в силу симметрии относительно канала имеем равенства ЕВ = ЕС и DB = DC), которая в свою очередь будет превосходить величину АС = AD + DB, что и требовалось доказать.