Выбрать главу

Рис. 42

12.18. Под углом к магистрали, косинус которого равен 1/k, проведем луч из города А в той полуплоскости, которая не содержит населенного пункта В (рис. 43). Тогда для любой точки С магистрали, ст которой предполагается отвести проселочную дорогу СВ, имеем, что время движения транспорта по участку СА магистрали будет равно времени движения по проселочной дороге CD, перпендикулярной проведенному ранее лучу (скорости на участках ВС и CD считаем равными). Следовательно, общее время движения по ломаной ВСА пропорционально длине ломаной BCD. Так как кратчайшая такая ломаная совпадает с перпендикуляром к лучу, опущенным из точки В, то на этом перпендикуляре как раз и лежит искомая точка магистрали. Заметим, что точка В, возможно, и не проектируется на луч AD (а проектируется на его продолжение), тогда проселочную дорогу следует отвести прямо от города А.

Рис. 43

§ 13. Измерения и вычисления в пути

С какой скоростью идет поезд или машина, какова скорость течения реки, чему равно расстояние между пунктами, не столкнутся ли два движущихся объекта? Такие вопросы часто возникают во время наших путешествий. Но вот ответы на них не всегда удается подобрать "на ходу". Мы предоставляем вам возможность в спокойной обстановке с карандашом и бумагой в руках потренироваться в решении задач подобного рода, чтобы впоследствии не испытывать затруднений в измерениях и вычислениях реальных скоростей, расстояний и промежутков времени.

При решении задач настоящего параграфа в реальных условиях вам понадобится освоить операцию измерения времени с помощью секундомера, имеющегося почти на любых часах. Полезным будет и умение измерять расстояния, скажем, шагами (см. задачу 10.1). В некоторых случаях вам поможет знание стандартных величин, таких как скорость звука, длина рельса и т. д.

Самое главное, без чего нельзя решить ни одну задачу на движение,- это понимание физического смысла движения. Мы будем молчаливо предполагать, что все объекты движутся прямолинейно и равномерно, если только в условии задачи специально не оговорено, что это не так. Важную роль будет играть идея сложения скоростей; например, скорость велосипедиста при движении против ветра будет складываться из собственной скорости велосипедиста и скорости ветра, взятой с отрицательным коэффициентом. Разумеется, такого рода предположения являются в известной степени приближенными (как, впрочем, и сами измерения), однако они позволяют хотя бы грубо оценить интересующую нас величину и исследовать ее зависимость от тех или иных параметров.

13.1. Далеко ли до молнии? Если вы оказались во время грозы в незащищенном месте, то, наверняка, при каждом ударе грома будете испытывать известный трепет от сознания того, что где-то совсем ядом происходит грозное явление природы. Чтобы хоть немного успокоиться в описанных условиях, попробуйте определить расстояние до молнии следующим способом: сосчитайте, сколько секунд проходит между вспышкой молнии и соответствующим ударом грома; тогда, поделив полученное число секунд на 3, вы найдете искомое расстояние, выраженное в километрах. Насколько точен предложенный способ?

13.2. За рулем автомобиля Представьте себе, что вы сидите за рулем автомобиля и хотите узнать скорость машины, идущей впереди вас. Как это проще всего сделать?

13.3. Скорость поезда Находясь в движущемся поезде, вы, конечно, не раз задумывались о том, можно ли определить скорость этого поезда. Предложите какие-нибудь способы измерения скорости, разумеется, осуществимые в условиях поездки. Нельзя ли измерить скорость поезда, лежа на полке и даже не глядя в окно?

13.4. Средняя скорость Автомобиль с грузом ехал из одного города в другой со скоростью 60 км/ч, а возвращался обратно порожняком со скоростью 100 км/ч. Какова средняя скорость автомобиля?

Не спешите с ответом: средняя скорость неравна 60+100/2 = 80 км/ч!

13.5. По тоннелю Поезд длиной 1 км идет со скоростью 60 км/ч. Сосчитайте в уме, сколько времени понадобится поезду для прохождения тоннеля длиной 1 км.