Выбрать главу

a2 + (b - v(t - 6))2.

Рис. 45

Подставляя последовательно значения t = 6, t = 13, t = 17, мы получим из условия задачи три уравнения:

a2 + b2 = 202, a2 + (b - 7v)2 = 152,

a2 + (b - 11v)2 = 132,

Из них находим (вычитая первое уравнение из двух других)

-14bv + 49v2 = -175,

-22bv + 121v2 = -231,

откуда v = 1, b = 16 и а = 12, последнее значение как раз и задает наименьшее расстояние 12 км между кораблями.

§ 14. Как будет быстрее?

Важное практическое значение имеют такие задачи на движение, в которых требуется выяснить, какой из способов передвижения является наиболее выгодным в сложившейся ситуации. Например, по какой реке - с быстрым или медленным течением -можно за меньшее время проплыть туда и обратно, как лучше организовать движение, чтобы максимально эффективно использовать имеющиеся транспортные средства, и т. п.?

Не всегда такие задачи бывают просты. При исследовании ответа на поставленные ниже вопросы советуем вам вдумываться в суть дела, отыскивать причины, оказывающие основное влияние на изучаемые характеристики движения. Заметим, что для нахождения наименьшего значения какой-либо величины, скажем времени движения, необходимо не только указать само это наименьшее значение и способ его достижения, но также и доказать, что меньше полученного значения эта величина быть не может.

14.1 Два туриста По дороге идут два туриста. Один из них делает шаги на 10% короче и в то же время на 10% чаще, чем другой. Кто из туристов идет быстрее?

14.2. Всего на полминуты Вы едете на автомобиле со скоростью 60 км/ч. На сколько нужно увеличить скорость вашего автомобиля, чтобы проезжать один километр пути на полминуты быстрее?

14.3. Зачем нужно соблюдать дистанцию? По шоссе со скоростью 80 км/ч движется вереница машин. Расстояние между идущими друг за другом машинами равно примерно 15 м, а средняя длина машины составляет 5 м. Можно ли в целях безопасности движения потребовать, чтобы на более узком участке дороги, скажем на мосту, машины снижали скорость до 20 км/ч?

14.4. Какой способ лучше? Попробуйте сообразить в уме, что быстрее: проехать весь путь на велосипеде или одну половину пути проехать на мотоцикле, двигаясь впятеро быстрее, чем на велосипеде, а другую половину пройти пешком, двигаясь вдвое медленнее, чем на велосипеде?

14.5. Половину пути или половину времени? Что быстрее: половину пути пройти пешком, а другую половину проехать на машине или половину затраченного времени идти пешком, а другую половину ехать на машине?

14.6. Каков эффект от течения реки? Два селения расположены на одном берегу реки. Из одного селения в другое отправляется посыльный, который должен получить там пакет и возвратиться назад. Посыльный может либо пройти весь путь туда и обратно пешком, либо проплыть этот путь по реке на лодке, собственная скорость которой равна скорости пешехода.

При каком способе передвижения посыльный возвратится раньше?

14.7. Вдвоем на одном велосипеде Два туриста хотят добраться до селения, находящегося от них на расстоянии 30 км. Дело осложняется тем, что у них имеется только один (одноместный) велосипед. Как туристам нужно организовать движение, чтобы как можно быстрее им обоим добраться до селения? Скорость пешехода считайте равной 5 км/ч, а скорость велосипедиста 15 км/ч.

14.8. Втроем на двух велосипедах Три туриста хотят добраться до селения, имея только два (одноместных) велосипеда. Как туристам нужно организовать движение, чтобы как можно быстрее всем троим добраться до селения?

14.9. Втроем на мотоцикле Могут ли три туриста, имея один двухместный мотоцикл, преодолеть расстояние 60 км за три часа? Скорость пешехода считайте равной 5 км/ч, а скорость мотоциклиста 50 км/ч.

14.10. Пешком через пустыню Путешественник хочет пересечь пустыню по заданному маршруту, имея возможность проходить ежедневно по 20 км и брать с собой в дорогу лишь трехдневный запас продовольствия, причем только в начальной точке маршрута. В конце дневных переходов он может устраивать склады с запасами продовольствия для использования их в будущем.