За какое наименьшее количество дней при этих условиях путешественник сможет пересечь пустыню по маршруту длиной 80 км? Сможет ли он пересечь пустыню за 15 дней, если маршрут имеет длину 100 км?
Решения
14.1. Первый из упомянутых туристов идет медленнее. Действительно, когда второй турист делает 10 своих шагов длины а каждый, первый турист делает 11 своих шагов длины 0,9а каждый. Таким образом, первый турист проходит расстояние 9,9а за то же время, за которое второй проходит большее расстояние 10а.
14.2. Автомобиль, движущийся со скоростью 60 км/ч, проходит один километр пути за одну минуту. Для того чтобы проезжать этот километр на полминуты быстрее, автомобиль должен за ту же минуту проезжать не один, а два километра. Поэтому его скорость должна быть вдвое больше исходной, а значит, ее нужно увеличить на 60 км/ч.
14.3. Вначале скорость вереницы машин равна 80 км/ч, а на каждую машину приходится участок шоссе длиной 15 + 5 = 20 м. Подъезжая к мосту, каждая из машин замедлит свое движение, но каждая следующая машина сделает это несколько позже, а значит, расстояние между машинами на мосту уменьшится. Чтобы подсчитать, на каком расстоянии друг от друга будут ехать машины, заметим, что при изменении их скоростей одна величина все же остается в среднем неизменной, а именно временной интервал между машинами, т. е. время, необходимое каждой следующей машине для того, чтобы занять место предыдущей. Поскольку на мосту скорости машин в 80/20 = 4 раза уменьшатся, то и расстояния между ними также уменьшатся в 4 раза и будут равны примерно 20/4 = 5 метрам. А так как сами машины имеют длину по 5 метров каждая, то это означает, что машины будут ехать вплотную, каковое движение практически не представляется возможным.
Из решения настоящей задачи будущие водители могут сделать для себя полезный вывод: при увеличении скорости движения машины нужно внимательно следить за расстоянием до впереди идущей машины на случай непредвиденного замедления ее скорости.
14.4. Для проезда всего пути на велосипеде потребуется меньше времени, так как столько же времени займет одно лишь прохождение половины пути пешком (с вдвое меньшей скоростью), к чему добавится время, необходимое для проезда половины пути на мотоцикле, положительное, каким бы малым оно не было (даже если скорость мотоцикла будет не в пять, а в любое число раз превышать скорость велосипеда).
14.5. Эта задача так же, как и задача 14.4, может быть решена в уме. Если идти пешком и ехать на машине одинаковое время, то путь, проделанный на машине, будет, конечно, большим, чем путь пройденный пешком. Следовательно, в этом случае на машине будет пройдено более половины всего пути, что, естественно, займет меньше времени, чем если бы на машине была пройдена ровно половина пути.
14.6. Пусть расстояние между селениями обозначено через s, скорость пешехода - через х (она же есть скорость лодки в стоячей воде), а скорость течения реки - через у. Тогда время, затраченное пешеходом на весь путь туда и обратно, равно 2s/x, а время, необходимое в сумме для прохождения на лодке расстояния s как по течению, так и против течения реки, равно Последняя величина больше, чем первая, так как
Поэтому посыльный возвратится раньше в случае, если пойдет пешком.
Казалось бы, время возвращения посыльного должно быть одинаковым при передвижении как пешком, так и на лодке: ведь течение реки половину пути относит лодку назад, а другую половину - вперед. Однако положительное действие течения длится по времени меньше, чем отрицательное, а значит, общий эффект от влияния течения реки на время возвращения посыльного будет отрицательным.
14.7. Если один турист проедет на велосипеде половину пути, т. е. 15 км, за один час, оставит велосипед и дальше пойдет пешком в течение трех часов, то он доберется до селения за четыре часа. В этом случае другой турист, наоборот, первые три часа будет идти пешком и, дойдя до велосипеда, оставшееся расстояние до селения проедет на велосипеде, т. е. тоже доберется до селения за четыре часа. Итак, оба туриста, отправившись одновременно, доберутся до селения также одновременно.