Рис. 54
Так же как и в задаче 15.13, находим, что
Построение правильного шестнадцатиугольника выполняется аналогично построению в предыдущих задачах.
Теперь на окружности радиуса АО от любой точки последовательно отложим 15 дуг, каждая из которых равна дуге АВ. Получим вершины правильного шестнадцатиугольника.
15.16. Пусть заданный отрезок АВ имеет длину а. Найдем длину х большей части "золотого сечения" отрезка АВ. Из пропорции
получаем
Рис. 55
Следовательно, задача сводится к построению отрезка указанной длины х по отрезку длины а. Число равно длине гипотенузы прямоугольного треугольника с катетами а и а/2, который можно построить с помощью циркуля и линейки. Для получения отрезка длины
достаточно из гипотенузы построенного треугольника вычесть отрезок длины а/2. Следовательно, построение "золотого сечения" отрезка АВ можно произвести следующим образом (рис. 55):
* из точки В восставим перпендикуляр BN к отрезку АВ, на нем отложим отрезок ВС длины 1/2 АВ;
* соединим точки А и С и отложим на отрезке АС отрезок DC длины ВС;
* отложим на отрезке АВ отрезок АЕ длины AD, тогда точка Е делит отрезок АВ в "золотом сечении".
15.17. Пусть АВ - сторона правильного вписанного в окружность десятиугольника. Тогда ∠ AОВ = 36°, а каждый из углов ОАВ и АВО равен 72° (рис. 56). Проведем биссектрису АС угла A треугольника АОВ. Так как ∠ AСВ = 72°, то из равнобедренных треугольников ABC и АСО получим AB = AС = ОС.
Рис. 56
По свойству биссектрисы треугольника имеем ОС:ВС = АO:АВ. Поскольку АО = ОВ, АВ = ОС, то ОС:ВС = ОВ:ОС, т. е. ОС2 = ВС*ОВ, а это и означает, что радиус ОВ разделен точкой С в "золотом сечении", причем ОС - большая часть радиуса (ибо ∠ ACB> ∠BAC, откуда ОС = АВ>ВС).
Таким образом, разделив радиус ОВ данной окружности в "золотом сечении" (см. задачу 15.16) и взяв большую его часть ОС, мы найдем длину стороны А В правильного вписанного в эту окружность десятиугольника. Теперь от любой точки данной окружности последовательно отложим девять хорд, каждая из которых равна АВ. Один из конкретных способов построения стороны ОС = АВ требуемого десятиугольника приведен на рис. 57.
Рис. 57
15.18. Разделим данную окружность на 10 равных частей (см. задачу 15.7). Тогда точки деления, взятые через одну, являются вершинами правильного пятиугольника (см. задачу 15.2). Впрочем, на рис. 57, где построен отрезок ОС, равный стороне правильного вписанного десятиугольника, имеется и отрезок CD, равный стороне требуемого пятиугольника.
15.19. Нарисуем некоторую окружность, разделим ее на 5 равных частей (см. задачу 15.18) и соединим точки деления через одну хордами друг с другом, как указано на рис. 58.
Рис. 58
15.20. Поскольку 1/6 - 1/10 = 1/15, то, отняв от дуги, равной 1/6 окружности, дугу, равную 1/10 окружности, мы получим остаток, равный 1/15 окружности. Это наблюдение позволяет вписать в окружность правильный пятнадцатиугольник (способы деления окружности на 6 и 10 частей описаны в задачах 15.5 и 15.17).
15.21. Из конца А и середины С заданного отрезка АВ восставим перпендикуляры АN и СМ и проведем окружность с центром А и радиусом АВ (рис. 59). Отложим на перпендикуляре AN отрезок AD длины АС и проведем отрезок BD. Отложим на отрезке BD отрезок DE длины AD и проведем окружность с центром В и радиусом BE до пересечения с первой окружностью в точке F. На прямой AF построим точку G на расстоянии АВ от точки В, Тогда центр О окружности, описанной около правильного пятиугольника со стороной АВ, лежит на пересечении прямой СМ с серединным перпендикуляром к отрезку BG. Действительно, окружность, описанная около треугольника ABG, является описанной и около требуемого пятиугольника, так как вписанный угол BAG равен центральному углу BAF, опирающемуся на сторону FB десятиугольника, вписанного в первую окружность (см. задачу 15.17), и, следовательно, равному 36°. Поэтому углы BOG и AOB равны 72° каждый. Остальные две вершины пятиугольника лежат на пересечениях описанной окружности с перпендикуляром СМ и с первой окружностью соответственно.