Рис. 76
16.11. Искомая точка А лежит как на перпендикуляре ВС к данной прямой DE, проходящем через заданную точку В, так и на прямой FG, параллельной прямой DE и отстоящей от нее на то же расстояние, что и точка В. Построение точек С и F, G можно произвести, не проводя никаких линий (см. решения задач 16.10, 16.7), а затем найти точку пересечения А прямых ВС и FG. Эта точка, вообще говоря, не обязательно является узлом сетки, что хорошо видно на рис. 77.
Рис. 77
16.12. Если прямая проходит через два узла А и В, то она либо совпадает с линией сетки и тогда образует с ней нулевой угол с нулевым тангенсом, либо является гипотенузой прямоугольного треугольника ABC, катетами АС и ВС которого служат целочисленные горизонтальная и вертикальная проекции отрезка АВ. В последнем случае тангенсом одного из острых углов треугольника ABC является отношение ВС/АС, которое есть рациональное число.
Для доказательства обратного утверждения допустим, что тангенс угла наклона данной прямой к горизонтали равен рациональному числу m/n, где m и n - натуральные числа. Тогда, отступив от узла сетки, через который уже проходит наша прямая, на n единиц по горизонтали, а затем на m единиц по вертикали (в соответствующую сторону), мы получим еще один узел сетки, который обязан лежать на той же прямой, поскольку отрезок, соединяющий два этих узла, составляет с горизонталью угол, тангенс которого равен как раз m/n.
16.13. Отметим точки D, E, F, G и соединим их с точками A, В и С и друг с другом так, как показано на рис. 78. Тогда из равенства прямоугольных треугольников ADB, АЕС и их расположения относительно линий сетки вытекает что точка С является результатом поворота точки В, вокруг точки А на угол 90° (см. задачу 16.8). Поэтому ABC есть равнобедренный прямоугольный треугольник с гипотенузой ВС. Отсюда имеем равенство ∠ AВС = 45°.
Рис. 78
Учитывая также, что угол ABC составлен из угла AВС, тангенс которого равен у, и угла FBC, тангенс которого равен 1/2, получаем равенство
16.14. Наложим на квадрат ABCD сетку с шагом, равным четверти стороны квадрата, и обозначим узлы G и Н так, как указано на рис. 79. Тогда из равенства и расположения прямоугольных треугольников EFG и DFH вытекает, что Е является результатом поворота точки D вокруг точки F на угол 90° (см. задачу 16.8). Поэтому из равнобедренного прямоугольного треугольника DFE имеем равенства
Рис. 79
16.15. Расположим сетку так же, как это было сделано при решении задачи 16.14, и обозначим на луче узлы сетки G, H, К, а также узлы L, М, N и Р, Q, R в соответствии на рис. 80. Учитывая, что угол DF5 прямой, получаем равенства
Рис. 80
Теперь остается заметить справедливость соотношений
и посчитать тангенсы углов
После этого требуемые равенства получаются, если вместо указанных углов подставить соответствующие арктангенсы.
16.16. Пусть вершины треугольника ABC лежат в узлах сетки, а угол ABC не равен 90°. Так как в этой ситуации невозможно, чтобы одна из сторон А В или ВС этого угла имела горизонтальное направление, а другая вертикальное, то без ограничения общности можно считать, скажем, вертикальное направление не занятым ни одной из указанных сторон. Поэтому тангенсы углов, образованных лучами ВА и ВС с некоторым горизонтальным лучом BD (рис. 81), окажутся определенными (ведь ни один из углов ABD и CBD не является прямым) и к тому же рациональными числами, так как и вертикальные, и горизонтальные проекции отрезков АВ и ВС имеют целую длину. Обозначив α = tg ∠ ABD, β = tg ∠ CBD, получаем, что тангенс угла ∠ ABC = ∠ ABD - ∠ CBD есть также рациональное число (здесь знаменатель 1 + αβ мог бы оказаться равным нулю только в случае прямого угла ABC). Таким образом, доказано, что угол ABC либо прямой, либо имеет рациональный тангенс. Аналогичные утверждения будут верны и для двух других углов треугольника ABC.
Рис. 81
16.17. Пусть прямая проходит через узлы В и С, а повернуть ее нужно вокруг узла В на угол с данным рациональным тангенсом α. Один из способов это сделать состоит в том, чтобы определить по узлам В и С тангенс β угла наклона прямой ВС к горизонтальному (или вертикальному) лучу BD, а затем найти тангенс γ угла наклона искомой прямой к тому же лучу по формуле