Выбрать главу

17.19. Загадочный узел Попробуйте завязать бумажную полоску с параллельными краями узлом так, чтобы после ее стягивания и разглаживания в узле образовался пятиугольник ABCDE, изображенный на рис. 89. Докажите, что этот пятиугольник правильный.

Рис. 89

Решения

17.1. Обычно бумагу перегибают следующим образом: одну часть листа накладывают на другую и, прижав их друг к другу в определенном месте одной рукой, разглаживают оба листа другой рукой до образования складки. Если при этом некоторые две точки А и В бумаги оказались прижатыми друг к другу, то любая точка С складки будет равноудалена от точек А и В, так как отрезки АС и ВС после разглаживания окажутся прижатыми друг к другу. Поскольку множество таких точек С совпадает с серединным перпендикуляром к отрезку АВ, то полученная складка будет прямой линией. Заметим, что любые точки листа бумаги, которые оказываются прижатыми друг к другу после его перегибания по некоторой прямой, являются симметричными относительно этой прямой на развернутом листе.

17.2. Перегнем лист бумаги по прямой линии, проходящей через точки А и В так, чтобы сами точки остались на видимой стороне бумаги после перегибания (рис. 90). Тогда, прижав друг к другу точки А и В неразвернутого листа и разгладив этот лист, мы получим искомую точку С на прямой АВ, равноудаленную от А и В (решение задачи 17.1).

Рис. 90

17.3. Перегнем лист бумаги по данной прямой так, чтобы данная точка D осталась на видимой стороне листа. Затем, не разворачивая лист бумаги, перегнем его еще раз по прямой, проходящей через точку D, проследив при этом за тем, чтобы некоторые точки А и В данной прямой совместились (рис. 90). Тогда полученная прямая CD будет перпендикулярна прямой АВ, поскольку углы ACD и BCD в силу симметрии равны друг другу и составляют в сумме развернутый угол АСВ.

В описанном здесь построении после первого перегибания бумагу можно полностью развернуть, а затем перегнуть по прямой, проходящей через точку D, проследив за тем, чтобы совместились некоторые другие точки прямой АВ, одна из которых лежит на самом краю листа.

17.4. Проведем сначала перпендикуляр к данной прямой к, как описано в решении задачи 17.3, а потом проведем перпендикуляр к полученной прямой, проходящий через иную точку. Последняя прямая будет параллельна данной, так как обе они перпендикулярны одной и той же прямой.

17.5. Если круг вырезан из бумаги, то, перегнув его полам по некоторому диаметру АВ (для этого нужно, чтобы, как на рис. 91, при наложении две полуокружности вместились друг с другом), а затем перегнув лист еще раз так, чтобы совместились точки А и В, мы получим центр О круга (см. задачу 17.2).

Рис. 91

Если же круг нарисован на непрозрачной бумаге, то перегнем лист по какой-нибудь хорде и по серединному перпендикуляру АВ к ней, а затем найдем середину О этого перпендикуляра (см. задачи 17.2, 17.3). Точка О будет центром круга, так как АВ - его диаметр (серединный перпендикуляр к некоторой хорде).

17.6. Перегнем бумагу по прямой, проходящей через Центр О окружности и данную ее точку А, так, чтобы точки О и А оказались на видимой стороне листа (рис. 92). Теперь перегнем лист еще раз по линии, проходящей через точку О, следя за тем, чтобы точка А совместилась с какой-нибудь точкой В проведенной прямой. Тогда точка В будет удалена на расстояние ОА от центра окружности, т. е. будет лежать как на прямой, так и на окружности. Подбирая другой угол между первой и второй линиями перегиба, мы получим еще одну точку С пересечения прямой с окружностью (если, конечно, такие точки вообще существуют).

Рис. 92

17.7. Для построения биссектрисы угла А треугольника ABC перегнем лист бумаги так, чтобы сторона АВ пошла по стороне АС. Тогда линия сгиба будет осью симметрии угла ВАС, т. е. его биссектрисой. Высота проводится тем же методом, что и в решении задачи 17.3, где опускается перпендикуляр из данной точки (вершины треугольника) к данной прямой (противолежащей стороне треугольника). Для проведения медианы к стороне ВС данного треугольника сначала найдем середину этой стороны (см. задачу 17.2), а затем соединим ее линией сгиба с вершиной А треугольника ABC. Центр вписанной окружности лежит на пересечении биссектрис каких-нибудь двух углов треугольника. Для нахождения центра описанной окружности достаточно провести серединные перпендикуляры к каким-нибудь двум сторонам треугольника (см. задачи 17.3) и определить точку их пересечения.