18.8. Необходимо перегнуть четырехугольный кусок материи два раза. В самом деле, одного перегибания явно недостаточно для проверки того, является ли четырехугольник квадратом, так как наличие у него не только одной, а даже двух осей симметрии еще не позволяет утверждать, что четырехугольник есть квадрат (см. задачи 18.6 и 18.7). С другой стороны, если четырехугольник ABCD симметричен относительно диагонали АС и относительно прямой EF, проходящей через середины сторон АВ и CD (рис. 115), то он является квадратом. Действительно, применяя в определенном порядке указанные симметрии, получаем равенства AB = AD = BC = CD и ∠ ABC = ∠ BAD = 90°, из которых следует, что четырехугольник ABCD является ромбом и прямоугольником, т. е. квадратом.
Рис. 115
18.9. Гарантии того, что кусок материи имеет форму круга, дать нельзя, если нам не известно, по каким именно линиям производились сгибания материи. Например, если n этих линий выбраны так, как указано на рис. 116, т. е. делят полный угол на 2n одинаковых углов, то кусок материи может оказаться как правильным 2n-угольником, так и криволинейной фигурой, образованной поворотами какой-нибудь кривой линии типа ABC на углы, кратные углу АОС.
Рис. 116
Однако, как это ни удивительно, для проверки того, имеет ли данный кусок материи форму круга, достаточно убедиться, что он имеет всего лишь две оси симметрии, от которых требуется только, чтобы угол между ними измерялся иррациональным числом градусов.
18.10. Перегнув материю поперек тех двух ее краев, параллельность которых подлежит проверке, мы можем совместить один край ЕА с его продолжением ЕВ по общей их части (рис. 117), а затем проверить, совместился ли при этом другой край FC с его продолжением FD по общей их части (мы подразумеваем, что линия перегиба EF пересекает оба исследуемых края материи). Если на другом крае произошло совмещение, то прямые АВ и CD параллельны, так как перпендикуляр EF к прямой АВ (углы AEF и BEF равны в силу их симметрии) в этом случае является одновременно и перпендикуляром к прямой CD (углы CFE и DFE также равны в силу их симметрии). Если же на другом крае совмещения не произошло, то прямые АВ и CD не параллельны, так как отрезок EF в этом случае перпендикулярен прямой АВ, но не перпендикулярен прямой CD.
Рис. 117
Теперь найдем указанным способом все пары параллельных противоположных сторон данного четырехугольного куска материи. Если таких пар окажется две, то этот кусок имеет форму параллелограмма, если одна - то трапеции, а если ни одной - то ни то, ни другое. 18.11, Пусть угол А является наибольшим углом треугольника ABC (определить его можно, например, описанными ниже перегибаниями, позволяющими непосредственно сравнивать по величине любые два угла треугольника). Перегнем материю по линии EF (рис. 118) так, чтобы точка С совместилась с точкой А.
Рис. 118
Перегнем материю, не разворачивая после первого перегиба, по линии FG так, чтобы в результате луч FB совместился с лучом FC. Тогда если после этих двух перегибов точки В и С совместились, то угол А прямой, если отрезок FC оказался длиннее отрезка FB, то угол А острый (рис. 119), а если наоборот, то угол А тупой (рис. 120).
Рис. 119
Докажем последнее утверждение. Если точки В и С совместились, то AF = BF = CF и поэтому точки А, В и С лежат на окружности с центром F и диаметром ВС, откуда угол САБ прямой. Если AF = CF = BF, то возьмем на луче FB точку D, удовлетворяющую равенству DF = CF и, следовательно, по доказанному образующую прямой угол DAC. В случае BF<DF имеем ∠ ВAС<∠ DAС = 90°, а в случае BF&362;Df имеем ∠ BAC > ∠ DAC = 90°, что и требовалось доказать.
Рис. 120
18.12. Чтобы убедиться в вертикальности шеста (рис. 121), достаточно проверить, что шест находится в одной плоскости с некоторой вертикальной линией, а также в одной (другой) плоскости с некоторой другой вертикальной линией. Указанную проверку можно осуществить с помощью отвеса (бечевки с грузиком на конце): если расположить его перед собой так, чтобы верхние концы отвеса и шеста оказались на одной линии с глазом, то линии отвеса и шеста должны зрительно совпасть.
Рис. 121