Выбрать главу

Рис. 128

18.22. Пятиугольник с равными диагоналями не обязательно правилен. Это утверждение подтверждается пятиугольником AEDCB, построенным следующим образом (рис. 129): пусть в равнобедренном треугольнике ADB угол при вершине D меньше 36°, тогда проведем перпендикуляры к прямой АВ, удаленные от точки D на расстояние, равное половине AD, и выберем на них точки С и Е, удаленные от точек А и В соответственно на расстояние AD, В построенном пятиугольнике все пять диагоналей равны между собой (по построению они равны диагонали AD), однако сам пятиугольник не является правильным, поскольку угол между диагоналями, выходящими из одной вершины правильного пятиугольника, равен 36°, а у нас получилось неравенство

Рис. 129

Заметим, что более убедительным, хотя и менее строгим примером может служить вырожденный пятиугольник AEDCB со слившимися вершинами А и В, изображенный на рис. 130 и полученный из равностороннего треугольника АЕС добавлением еще одной вершины D, удаленной от вершины А на расстояние АС, и раздвоением вершины А на две вершины А и В.

Рис. 130

Приемом построения вырожденных контрпримеров мы воспользуемся при решении следующих задач, а при желании вы сможете сами слегка подправить построения так, чтобы они были невырожденными.

18.23. Наименьшее число равных диагоналей, необходимых для проверки правильности равностороннего пятиугольника ABCDE, равно трем. Действительно, двух равных диагоналей для этого недостаточно: пример вырожденного пятиугольника, превратившегося в трапецию с равными диагоналями BD и СЕ, изображен на рис. 131.

Рис. 131

Если же у равностороннего пятиугольника ABCDE равны три диагонали, скажем AC, BD и СЕ (а на самом деле любые три диагонали - попробуйте доказать это самостоятельно), из равенства треугольников ABC, BCD и CDE (по трем сторонам) вытекает равенство углов пятиугольника при вершинах В, С и D (рис. 132). Кроме того, из равенства треугольников ABD и ACD (по трем сторонам) имеем ∠ BAD = ∠ CDA, откуда с учетом равнобедренности треугольника AED получаем равенство углов пятиугольника при вершинах А и D. Аналогично доказывается равенство углов при вершинах В и Е, т. е. равенство всех углов и, значит, правильность пятиугольника ABCDE.

Рис. 132

18.24. Условие а) в дополнение к тому, что три главные диагонали равностороннего шестиугольника пересекаются в одной точке, не обеспечивает его правильности. Например, вырожденный шестиугольник ABCDEF, превратившийся в прямоугольник и изображенный на рис. 133, удовлетворяет всем перечисленным условиям, но не является правильным.

Рис. 133

Аналогично обстоит дело и с условием в), для которого контрпримером служит вырожденный шестиугольник ABCDEF, превратившийся в треугольник и изображенный на рис. 134 (в нем главные диагонали AD, CF и ЕВ равны и пересекаются в одной точке, неглавные диагонали образуют равносторонние треугольники АСЕ и BDF).

Рис. 134

Если же выполнено условие б), то около шестиугольника можно описать окружность с центром в точке пересечения его главных диагоналей, а коль скоро сам шестиугольник является еще и равносторонним, то он обязательно правильный (см. задачу 18.21).

18.25. Наименьшее число диагоналей, которое нужно проверить, равно четырем. В том, что трех диагоналей недостаточно, можно убедиться непосредственным перебором различных случаев. Если же в равностороннем шестиугольнике ABCDEF равны четыре неглавные диагонали АС, СЕ, ЕА и BD (рис. 135), то этот шестиугольник правильный. Действительно, углы шестиугольника при вершинах В, С, D и F равны в силу равенства треугольников ABC, BCD, CDE и EFA (по трем сторонам), а углы при вершинах С, Е и А также равны, поскольку они представляют собой одинаковые суммы углов (один из которых есть угол при вершинах С, Е или А равностороннего треугольника АСЕ, а два других являются углами при основаниях одинаковых равнобедренных треугольников АВСУ CDE или EFA). Таким образом, все углы равностороннего шестиугольника ABCDEF равны; следовательно, он правильный.

Рис. 135

§ 19. Маленькие хитрости

Книга подходит к концу. И если до сих пор к каждой задаче давалось достаточно подробное решение, то в настоящем параграфе вам представляется возможность решать задачи в большей степени самостоятельно.