Выбрать главу

19.82. Треугольный паркет Из правильных треугольников можно сложить паркет, т. е. замостить ими всю плоскость без наложений и дыр. А можно ли сложить паркет из произвольных неправильных, но все же одинаковых треугольников?

19.83. Четырехугольный паркет Из каких одинаковых четырехугольников можно сложить паркет?

19.84. Пятью прямыми Проведите 5 прямых, каждая из которых делит заданный прямоугольник на 2 равные части.

19.85. Дырявый прямоугольник Внутри прямоугольного листа бумаги вырезана дырка, имеющая форму параллелограмма (рис. 142). Предложите какой-нибудь способ, как разрезать этот лист на две части одинаковой площади.

Рис. 142

19.86. Треугольник наизнанку Вы вырезали из цветной бумаги треугольник, да, как выяснилось, у него цветной оказалась не та сторона. Как разрезать этот треугольник на части, чтобы, перевернув их обратной стороной, можно было сложить его снова?

19.87. Площадь пополам Из бумаги вырезан выпуклый четырехугольник. По какой линии, проходящей через данную его вершину, нужно провести разрез, чтобы четырехугольник разделился на две части одинаковой площади?

19.88. Теорема Пифагора На сторонах прямоугольного треугольника построены квадраты (рис. 143). Согласно теореме Пифагора, площадь наибольшего из них равна сумме площадей двух меньших.

Рис. 143

Попробуйте продемонстрировать этот факт, вырезав два меньших квадрата и разрезав их на такие части, из которых можно составить большой квадрат.

19.89. Плотное заполнение Можно ли ящик размером 20*15*14 заполнить коробками размером 3*5*10 так, чтобы в ящике не осталось пустот и из него не выступали коробки?

19.90. Заготовки для пельменей Из квадратного листа теста размером 8*8 нужно вырезать круги диаметром 1 для изготовления пельменей. Можно ли разместить на этом листе более 64 кругов?

19.91. На почтительном расстоянии Можно ли на круглом поле диаметром 1 км пробурить 125 скважин так, чтобы расстояние между любыми двумя скважинами было больше 100 м?

19.92. Перпендикуляр к диаметру Дана окружность диаметром АВ. Из некоторой точки, не лежащей на прямой АВ, нужно опустить перпендикуляр к этой прямой. Можно ли это сделать, используя только линейку (без делений)?

19.93. Вместо транспортира - линейка С помощью линейки (без делений) с параллельными краями проведите биссектрису данного угла.

19.94. Угол с недоступной вершиной С помощью линейки с параллельными краями проведите биссектрису угла, вершина которого находится за пределами листа бумаги.

19.95. Разделить линейкой без делений При помощи линейки (без делений) с параллельными краями разделите отрезок пополам.

19.96. Центр окружности При помощи линейки с параллельными краями найдите центр данной окружности.

19.97. Двусторонней линейкой Можно ли с помощью двусторонней линейки построить перпендикуляр к данной прямой?

19.98. Линейкой с делениями При помощи обычной линейки с делениями проведите биссектрису данного угла.

19.99. Обыкновенным угольником Найдите центр данной окружности при помощи угольника.

19.100. Найти середину Как с помощью одного угольника разделить данный отрезок пополам?

19.101. Шоколадкой как линейкой Вы положили плитку шоколада на бумагу, обвели ее карандашом и хотите найти точку пересечения диагоналей нарисованного прямоугольника. Можно ли это сделать, используя в качестве линейки ту же плитку, несмотря на то, что ее длины не хватает для проведения диагоналей?

19.102. К недоступному центру На самом краю листа нарисована дуга окружности, центр которой не помещается на бумаге. Через данную точку проведите прямую, проходящую через этот центр.

19.103. Перпендикуляр на краю листа На листе бумаги, имеющем рваный край (рис. 144), с помощью циркуля и линейки восстановите перпендикуляр

к прямой стороне АВ через ее концевую точку А.

Рис. 144

19.104. Циркулем, но не окружность Можно ли с помощью циркуля нарисовать на бумаге не окружность, а овал?

19.105. Точки на прямой С помощью одного лишь циркуля постройте несколько точек, лежащих на одной прямой с двумя данными точками.

19.106. Одним циркулем Разделите данный отрезок пополам, используя один лишь циркуль.

19.107. Заданные расстояния С помощью одного циркуля по данным двум точкам, расстояние между которыми равно 1, постройте точки, на которых реализуются расстояния