Говоря о вхождении в систему новых элементов и о вовлечении в неё с помощью последних новых процессов, надо иметь в виду, что абстрактно возможны два типа реакции старой системы: 1) отторжение новых элементов; 2) выживание и размножение новых элементов, а вместе с тем - возникновение нового режима функционирования системы. Можно уверенно предположить, например, что второй тип сопутствовал предбиологической эволюции. Современные исследования показывают, как могли возникнуть системы, устойчивые к появлению "мутантных" полимеров и одновременно приспособленные к росту своей организации. Ранее уже рассматривалась концепция М. Эйгена, которая даёт объяснение таким возможностям. Конкретный механизм возникновения соответствующих систем должен включать, по М. Эйгену, автокаталитический синтез новых молекул из молекул исходного множества /29/.
Синергетика, однако, вводит представление о дополнительных аспектах самопроизвольной организации, рассматривая условия отбора новых структур. Принятый в её рамках подход учитывает, что отбор не задаётся каким-либо априорным правилом, равно как не регулируется и не направляется к какой-либо заранее установленной пели. Напротив, результат отбора трактуется в ней как следствие особого флухтуационного поведения системы, когда флуктуации столь сильны, что выводят систему из прежнего равновесия со средой. При этом происходит вымирание вероятностей, с которыми поддерживался средний уровень равновесных флуктуаций, в силу чего обеспечивается прирост информации и под воздействием этого фактора идёт рост самоорганизации системы.
Интересно, что модель синергетнческой системы фиксирует процесс самопроизвольной организации как зависимый от определённого типа взаимодействий системы со средой. Это взаимодействие необычное. В науке чаще всего обращается внимание на его открытый характер, на установление обмена между системой и средой потоками вещества, энергии и информации. Однако, главное здесь состоит в том, что система за счёт резких флуктуаций, дающих макроскопический эффект, приобретает, по выражению И. Пригожина, диссипативную структуру /30/. Сегодня существуют значительные трудности в определении смысла данного понятия. Ясно, по крайней мере то, что оно позволяет уловить новые аспекты системной картины мира, не раскрываемые другими понятиями системного ряда. В исследованных синергетикой ситуациях диссипативная структура представляется как форма динамической организации, которая выходит за рамки динамики хаоса и обнаруживает законы неклассической термодинамической эволюции. Наличие этой структуры свидетельствует, что система может длительное время пребывать в состоянии, далёком от теплового равновесия. Диссипация означает рассеивание беспорядка системы в окружающую среду, но вместе с тем растёт внутренняя упорядоченность некой глобальной ситуации, обладающей неравновесностью / 31/.
Интересно то, что упорядоченность проявляется в данной ситуации через наложение ограничений на уровень флуктуаций. Но, кроме того, для системы; находящейся в неравновесном состоянии, как бы предзадан выбор одной из нескольких ветвей последующей эволюции, т.е. один из многих аттракторов. Ограничения накладываются факторами мирового целого, в том числе малозаметными привходящими действиями, например, малыми изменениями гравитационных сил, потенциалов электрических полей и т.п. Влияние последних становится параметром порядка, а по терминологии Г. Хакена - информатором /32/.
Г. Хакен справедливо ведёт речь о возникновении в условиях диссипации целостного информационного пространства или сигнальной среды. Он показывает, что извлечение соответствующего сигнала может побудить исходную систему пробежать все допустимые ветвления. Но содержащаяся в сигнале информация может оказаться также недостаточной или избыточной. В последнем случае к одному и тому же аттрактору ведут несколько сигналов. Понятно также, что из возникшей универсальной информационной среды черпают свою часть информации микроэлементы системы, обладающие коллективным действием, сравнимым с макропараметрами системы.
Существенно также, что рождение упорядочивающей информации идёт в уровневом масштабе, поэтому способы построения синергетических моделей не опровергают положения термодинамики о невозможности возникновения самоорганизации внутри теплового хаоса. Но синергетика обращает внимание на способы надстраивания регулирующей информации над уровнем теплового равновесия. В силу этого надстраивания физические, неживые системы перестают быть "слепыми", нейтральными к влиянию суперсистемных факторов, напротив, они приобретают способность "учитывать" указанные факторы в своём функционировании. Уровневый подход, тем самым, включается в описание объективных сложных систем, их спонтанной "адаптивной организации" и подстройки к окружающей среде.