В работе используется большой информационный материал из отечественной и зарубежной научной литературы, а также информация, полученная в результате исследований с помощью советских космических аппаратов. К сожалению, пришлось исключить из использования материалы американских лунных экспедиций, поскольку после получения информации о том, что реальный лунный грунт имеет коричневую окраску, а на американских фотографиях он имеет серый цвет, предположение о том, что эти лунные экспедиции являются мистификацией, получили серьезное подтверждение. Ранее такое предположение тоже было. Ясно, что американцам невозможно было осуществить столь грандиозный проект на базе имеющегося в то время у них ничтожного опыта. Низкий уровень американской космической техники подтвердился, когда два из пяти многоразовых космических аппарата «Челленджер» и «Колумбия» потерпели катастрофу. Одной из основных американских проблем было отсутствие мощных надежных ракетных двигателей. Нет у них таких двигателей и в настоящее время.
Основные гипотезы нового понимания мира были представлены в ряде выступлений на конференциях, семинарах и симпозиумах в институтах Академии наук, и не получили существенных критических замечаний. В то же время были получены хорошие отзывы о выдвинутых в книге предположениях.
В книге затронута только небольшая область знаний о Земле и космических телах Солнечной системы. Понятно, что такие представления могут распространяться и на системы других звезд Вселенной.
Глава 1. Базовые гипотезы
В существующем представлении об окружающем нас мире есть большое количество загадок и заблуждений. Многие представления, которые даются нам в университетах не соответствуют действительности, противоречат фундаментальным законам природы, а существуют только по традиции, другие не могут ответить на ряд вопросов.
Из существующих гипотез образования Солнечной системы наибольшую популярность имеет гипотеза О. Ю. Шмидта, согласно которой наша планетная система и, в частности, Земля возникли в результате сгущения окружавшего Солнце допланетного газопылевого облака [Шмидт, 1960]. С течением времени частицы этого облака слипались и образовали планеты.
Недостатком этой концепции является отсутствие предыстории появления самого вещества Солнечной системы. Концепция существует как бы в одном измерении космической механики, в то время как реально процессы идут еще одновременно в измерении ядерной физики и химии.
Надо отметить, что в эпоху зарождения Солнечной системы, примерно несколько миллиардов лет назад, образовались и сами элементы. Это не случайно, а произошло в результате одного события.
Образования элементарного вещества космических тел Солнечной системы в результате взрыва нейтронной звезды
Гипотеза 1
Исследованиями определено, что вещество Солнечной системы образовалось примерно 4,5 миллиарда лет назад. Такое представление сделано на основании того, что в составе элементов пород имеются радиоактивные изотопы (нестабильные атомы), которые с определенной скоростью постепенно распадаются. Если бы элементы существовали вечно, то нестабильных атомов не могло бы быть. Наличие нестабильных атомов в породах позволяет не только сделать вывод о том, что их элементы образовались, но и по скоростям распада вычислить примерно, когда это произошло.
Объяснение природы образования элементов Солнечной системы требует знаний ядерной физики. Знания этой области науки не являлись сильной стороной геологического сообщества, поэтому, когда возникали такие вопросы, ученые пространно ссылались на процессы, происходящие внутри звезд, или взрывы сверхновых.
Для объяснения явления образования элементов звездных систем выдвинута следующая гипотеза.
Образование элементов звездных систем происходит при взрывах нейтронных звезд
[Тимофеев, 2009; Тимофеев, 2013а]. При взрыве нейтронное вещество звезд распадается на атомы химических элементов, образующие в дальнейшем звездные системы.
Нейтронные звезды не могут существовать вечно. При длительном горении энергетические возможности их исчерпываются, звезда начинает остывать. Нейтронное вещество звезды способно существовать только при очень высоких температурах, а при остывании становится нестабильным. После остывания до критической температуры нейтроны, как это и положено в нашем более холодном мире, способны на β-распад. Происходит взрыв нейтронной звезды с образованием химических элементов. Такие взрывы сопровождаются значительным выделением энергии, сильным излучением нейтронов, протонов, электронов, фотонов (рис.1).