Но и тут все непросто. Нельзя говорить, что мы считаем свет либо волной, либо потоком частиц. Посмотрите в окно. Внезапно даже в чисто вымытом стекле мы видим свое, пусть нечеткое, но отражение. В чем подвох? Если свет — это волна, то объяснить отражение в окне просто — подобные эффекты мы видим на воде, когда волна отражается от препятствия. Но если свет — это поток частиц, то объяснить отражение так просто не получится. Все фотоны одинаковы, и поэтому преграда в виде оконного стекла должна одинаково на них воздействовать. Либо все они проходят сквозь стекло, либо все отражаются. В суровой реальности нашего мира часть фотонов пролетает через стекло, и мы видим соседний дом, но тут же наблюдаем свое отражение.
Единственное объяснение, которое приходит в голову: фотоны сами себе на уме. Нельзя со стопроцентной вероятностью предсказать, как поведет себя конкретный фотон — столкнется со стеклом как частица или как волна. Это основа квантовой физики — совершенно, абсолютно случайное поведение материи на микроуровне без какой-либо причины (а в своем мире больших величин мы по опыту знаем, что все имеет причину).
Похоже, что там, на фундаментальных уровнях мироздания, вселенной управляет идеальный генератор случайных чисел в отличие, скажем, от монетки, результат подбрасывания которой теоретически можно предсказать.
Гениальный Эйнштейн, открывший фотон, до конца жизни был уверен, что квантовая физика ошибается, и уверял всех, что «Бог не играет в кости», мол, должны быть причинно-следственные связи для выбора частицей своего состояния. Но современная наука все ответственнее подтверждает: таки играет. Хотя, конечно, можно пофилософствовать и предположить, что некий сверхразум наблюдает за каждым фотоном и решает, как ему сталкиваться со стеклом. Проверить эту гипотезу мы не можем, но есть одно косвенное доказательство, портящее идеалистическую картину. Дело в том, что в квантовых опытах фотон выбирает свою траекторию с вероятностью 50 %. Всегда. А это, как минимум, означает, что сверхразум не заинтересован в предопределенности событий и не склоняется ни в чью пользу. И тогда он опять неотличим от генератора случайных чисел.
Так или иначе, но как-то раз ученые собрались поставить жирную точку в споре «волна или частица» и решили воспроизвести опыт Юнга с учетом технологий XX века. К этому времени они научились пулять фотонами по одному (квантовые генераторы, известные среди населения под именем «лазеры»), и посему было задумано проверить, что будет на экране в случае, если выстрелить по двум щелям одной частицей: вот и станет понятно, наконец, чем же является материя при контролируемых условиях эксперимента.
Об этом эксперименте мы подробно расскажем в следующей главе, обещаем, что вы почти все поймете, а пока лишь скажем, что в результате опыта выяснилась ужасная вещь: одиночный фотон летит сразу через две щели и интерферирует сам с собой.
С точки зрения волны это логично: волна проходит через щели, и теперь две новые волны расходятся концентрическими кругами, накладываясь друг на друга.
Но с корпускулярной точки зрения получается, что фотон находится в двух местах одновременно, когда проходит через щели, а после прохождения смешивается сам с собой. Это вообще нормально, а?
Оказалось, что нормально. И вообще с точки зрения квантовой физики выпущенный фотон между стартом и финишем находится одновременно «везде и сразу». Такое нахождение частицы «сразу везде» физики называют суперпозицией — страшное слово, которое раньше было математическим баловством, а теперь стало физической реальностью.
Некий Э. Шредингер, известный противник квантовой физики, к этому времени нарыл где-то формулу, которая описывала волновые свойства материи. И немного над ней поколдовав, к своему же ужасу вывел так называемую волновую функцию. Эта функция показывала вероятность нахождения фотона в определенном месте. Заметьте, именно вероятность, а не точное местонахождение. И эта вероятность зависела от квадрата высоты гребня квантовой волны в заданном месте (если кому-то интересны детали).
Дела с дуализмом обстояли все интереснее и интереснее.
В 1924 году аристократ Луи де Бройль взял и заявил, что корпускулярно-волновые свойства света — это верхушка айсберга. А таким непонятным свойством обладают все элементарные частицы.
То есть частицей и волной одновременно являются не только кусочки электромагнитного поля (фотоны), но и вещественные частицы типа электронов, протонов и т. п. Вся материя вокруг нас на микроскопическом уровне является волнами (и частицами одновременно).
И спустя пару лет это даже подтвердили экспериментально — американцы гоняли электроны в электронно-лучевых трубках (которые известны нынешним старперам под названием «кинескоп») — так вот наблюдения, связанные с отражением электронов, подтвердили, что электрон — это тоже волна. Для простоты понимания можно сказать, что на пути электрона поставили пластинку с двумя щелями и лицезрели интерференцию электрона как она есть.
К настоящему времени в опытах обнаружено, что и атомы имеют волновые свойства, и даже некоторые специальные виды молекул (так называемые «фуллерены») совершают каминг-аут, проявляя волновые свойства.
Пытливый ум читателя, который еще не ошалел от нашего повествования, спросит: если материя — это волна, то почему, например, летящий мячик не размазан в пространстве в виде волны? Почему реактивный самолет никак не походит на волну, а очень похож на реактивный самолет?
Де Бройль, чертяка, и тут все объяснил: таки-да, летящий мячик или «боинг» это тоже волна, но есть специальная формула, в которой длина волны тела обратно пропорциональна его импульсу.
То чем больше импульс тела, тем меньше его длина волны.
А что такое импульс? Из школьной физики мы смутно припоминаем, что импульс — масса, умноженная на скорость. Тогда длина волны зависит от массы и скорости объекта.
Длина волны мяча, летящего со скоростью 150 км/час, будет приблизительна равна 0,0000000000000000000000000000000001 метра. Все дело в том, что мы не в состоянии заметить, как мячик размазан по пространству в качестве волны. Для нас это твердая материя.
А тот же электрон — весьма легкая частица, и, летящий со скоростью 6000 км/сек, он будет иметь заметную длину волны в 0,0000000001 метра.
Кстати, сразу ответим на вопрос, почему ядро атома не настолько «волновое». Хоть оно и находится в центре атома, вокруг которого, ошалев, летает и в то же время размазывается по орбитали электрон, ядро имеет приличный импульс, связанный с массой протонов и нейтронов, а также высокочастотным колебанием (скорость) из-за происходящего внутри ядра обмена частицами сильного взаимодействия (читайте лекцию про материю) — то есть внутри ядра постоянная движуха и суета. Поэтому ядро больше походит на привычную нам твердую материю. Электрон же, по-видимому, является единственной частицей с подходящей массой, у которой ярко выражены волновые свойства, вот его все с восторгом и изучают. Всё понятно?
Вернемся к нашим частицам. Так что получается: электрон, «вращающийся» вокруг атома — это одновременно и частица и волна. То есть вращается-то частица, и в то же время электрон как волна представляет собой оболочку определенной формы вокруг ядра — как это вообще можно понять человеческим мозгом?