Выбрать главу

Копенгагенская интерпретация

Самое известное объяснение происходящего принадлежало Бору и Гейзенбергу, которые пили пиво в Копенгагене и размышляли о том, как насолить Эйнштейну. Если вы читали предыдущие главы, то суть интерпретации вам будет понятна. Это и есть то, как Макс Борн объяснил двущелевой эксперимент. Сама реальность такова, что результат возникает исключительно из акта наблюдения.

В момент наблюдения, измерения, эксперимента, встречи с другим объектом и так далее частица выбирает себе судьбу из имеющегося набора в соответствии с вероятностями, заданными амплитудой. Казалось бы, что и с котом та же история, и у нас коты в суперпозиции — обыденное явление. Например, наша кошка точно однажды находилась одновременно на кухне и в спальне — мы можем поклясться об этом на пятом томике лекций Фейнмана!

Однако, вы могли заметить, что копенгагенская интерпретация говорит о том, что наблюдение — это не открытие коробки. А вообще-то любое вмешательство в жизнь атома. Коллапс происходит значительно раньше благодаря взаимодействию ядра атома с окружающим миром. Кот же в этом цирке жив, пока атом целехонек, или погибает, когда осколки распада попадают на детектор. Иначе говоря, когда квантовые явления взаимодействуют с макромиром: с детекторами частиц, с котами и так далее — суперпозиция накрывается медным тазом. Тут, правда, возникает вопрос, а где протекает граница между макро- и микромиром? Споры еще ведутся. В конце прошлого века ученые умудрились экспериментально проверить так называемый «квантовый парадокс Зенона», который предсказывает, если часто измерять определенную квантовую систему, то можно «заморозить» ее состояние, не давая ей разрушиться. Во всяком случае наблюдение за распадом атомов рубидия не давало ему распадаться, что теоретически могло продолжаться сколь угодно долго. Так что шутка Шрёдингера еще может выйти нам боком, и вдруг окажется, что при определенных условиях, в определенных обстоятельствах, при контролируемом эксперименте котик действительно окажется в суперпозиции. Страшно?

В СССР, в первой половине советской эпохи, к копенгагенской интерпретации относились прохладно, потому что выглядела она не очень. Ну сами посудите, тут у нас диалектический материализм, а здесь какие-то наблюдения и амплитуды вероятности.

Слава богам, были и другие интерпретации происходящего!

Многомировая интепретация

Другую интересную интерпретацию придумал американский физик Хью Эверетт III. Когда он приехал в Копенгаген показать свои идейки Бору, тот сказал, что идея глупая и отправил Эверетта восвояси. Однако интерпретация оказалась довольно оригинальной, и нынче это вторая версия по популярности среди физиков. Смысл теории Эверетта в том, что, не нужно заморачиваться на парадоксе наблюдения, так как приборы, производящие измерения тоже находятся в суперпозиции. Мы это не замечаем, потому что, как только происходит измерение, вселенная раздваивается («расстраивается», «расчетверяется» и т. д.) на все возможные варианты развития событий. То есть, когда ящик с котом открывается (ну или ядро выходит из суперпозиции), начинаются две новые интересные истории в параллельных вселенных: в одной кот жив, в другой мертв. Представьте, сколько квантовых событий происходит в мире ежесекундно, и сколько при этом рождается параллельных вселенных.

Поэтому теория называется многомировой интерпретацией.

А какие интересные следствия выходят из этих интерпретаций! Например, «квантовое самоубийство». Это мысленный эксперимент, рассматриваемый уже с позиции кота Шрёдингера. Представим, что человек соорудил такое ружье, которое стреляет (или не стреляет) на основе механизма распада ядра атома. С точки зрения копенгагенской интерпретации распад атома таки случится через некоторое время, и человек умрет. А вот в многомировой интерпретации будет немного иная картина. Каждый раз при нажатии курка, вселенная будет раздваиваться, и всегда будет существовать версия человека, у которого ружье никогда не выстрелит, хотя для стороннего наблюдателя такой человек будет мертв с высокой вероятностью.

Таким же образом можно додуматься и до квантового бессмертия. Даже находясь в эпицентре ядерного взрыва существует вариант развития событий, в котором вы выживаете и далее вы путешествуете мирам, удивляясь тому, как нелепое стечение обстоятельств позволяет вам каждый раз избежать смерти (в то время как ваши альтернативные версии дохнут как мухи).

Жирный плюс интерпретации: не нужны никакие коллапсы вероятностей, вселенная не испытывает мук выбора.

Увы, минус этой версии: вот когда покажете параллельный мир, тогда и поговорим.

Гипотеза скрытых параметров

Вот тут всё просто. Ну, относительно просто. Про это говорил Сам Эйнштейн: господа, мы просто о чем-то не знаем, поэтому нам всё вот так кажется. Надо искать новые теории, писать крутые формулы и ставить бомбические эксперименты. К тому же вы видите: квантовая механика никак не дружит с общей теорией относительности. А это, знаете ли, звоночек.

Гипотез, связанных со скрытыми параметрами, на самом деле несколько. Но самая известная это гипотеза Бома. Был такой физик, который опираясь на более ранние идейки Де Бройля, заявил, что перед электроном летит так называемая «пилотная волна», которую мы просто не обнаружили, и которая определяет, через какую щель пролетит электрон. Эйнштейн, между прочим, высказал свое «фи» гипотезе Бома, посчитав ее слишком попсовой.

Гипотеза Бома и в самом деле была сыровата, а впоследствии ее сильно подкосили неравенства Белла, про которые мы поговорим в следующей главе.

Однако, дальнейшее развитие идеи показывает, что не все так плохо со скрытыми параметрами. Немногочисленное общество физиков до сих пор пилят эту гипотезу, генерируют идеи и даже получают что-то убедительное. Беда в том, что гипотеза скрытых параметров хоть и возможна, но в ее нынешних версиях абсолютно бесполезна и при малейшем шаге в сторону тут же порождает много неудобных вопросов.

Нелюбовь мейнстрима к гипотезе скрытых параметров сделала свое черное дело, и уже много лет, чуть ли не со времен Бома, она притягивает фриков всех мастей, которые издают тонны трудов по опровержению квантмеха (и заодно классической физики) и объясняют трем с половиной желающих, как на самом деле устроен мир.

Что мы можем сказать по поводу этой интерпретации? Как ни крути, но вероятность того, что мы живем на генераторе случайных чисел очень велика, и гипотеза скрытых параметров — это отчаянная попытка вернуть давно ушедший поезд старой доброй классической механики.

Гипотеза супердетерминизма

Это очень страшная, но в чем-то правдоподобная гипотеза. Рекомендуем не читать про нее на ночь, иначе за вашу бессонницу мы не отвечаем.

Безумие квантовой механики легко и просто объяснить, если заявить, что все выборы частицы: где ей лететь, во что врезаться, с чем интерферировать и т. д — уже где-то записаны. Так сказать, в Великой Книге Судеб. Любое событие в Мироздании — от отражения фотона от стекла до провала вашего экзамена в технический ВУЗ — известно заранее.