Наглядную, но не слишком правильную аналогию, демонстрирующую принцип неопределенности, мы вычитали у какого-то автора, пытающегося делать то же, что и мы. Представьте себе непрозрачную трубку, в которой летает муха. Вот она летает от одного конца трубы до другого. Ее средняя скорость нам вполне известна (справились у Википедии), но местонахождение животинки мы предсказать не беремся: муха может отклониться от траектории, присесть, помыть лапки и так далее на всей длине трубки. Но вот мы начинаем трубку сжимать. Муха видит, как на нее надвигается гигантский пресс. Места для ее полетов все меньше и меньше. Муха паникует и начинает ускоренно летать в сжимающемся пространстве, врезаясь в стенки. Теперь мы знаем ее местонахождение гораздо точнее, но вот ее скорость уже не предсказуема. Паника творит чудеса даже в микромире, не правда ли?
Интереснейшим практическим следствием неопределенности является туннельный эффект.
Если по каким-то причинам местонахождение частицы становится все более и более определенным, то импульс становится, как мы уже поняли, совсем непредсказуемым. Вследствие этого совершенно обычного квантового явления неопределенность импульса может дать частице дополнительную энергию. Такая частица иногда вытворяет очень странную вещь: проходит сквозь непреодолимый барьер. В макромире, где такого, конечно же, не случается, это выглядело бы как прохождение сквозь стену или выпрыгивание из ямы без видимых причин. Муха из примера выше телепортировалась бы за пределы трубки и полетела по своим делам. Но туннелирование-таки существует и проявляется в макромире. Техника дошла до того, что мы используем явление в быту, например, в туннельном диоде или сверхпроводниках. Тот же радиоактивный распад существует благодаря эффекту туннелирования: альфа-частицы отрываются от тяжелого ядра не за счет собственных сил — ядро их на самом деле очень крепко держит (мы как-то уже рассказывали про сильное взаимодействие) — а как раз из-за существования ненулевой вероятности прорваться через энергетический барьер. И существование термоядерного синтеза внутри звезд (из-за которого наше солнце светит) также обусловлено туннелированием.
Не так давно (в 2016) ученые обнаружили, что молекула воды, оказавшись в очень узком канале кристаллической решетки берилла (минерал такой), чувствует себя неуютно, застряв в одном положении, как мы в автобусе, когда едем утром на работу. Из-за этого дискомфорта молекула начинает демонстрировать квантовые эффекты: поворачивается в этом канале, но не как макрообъект плавно и со скрипом, а мгновенно меняет свое положение, как если бы стрелка часов поворачивалась только десятиминутными интервалами — это и есть туннельный эффект. Мда, как бы это было удобно в автобусе…
Кто еще скажет, что наука это скучно?
Но это мы сейчас в 21 веке знаем о квантовых чудесах и даже принимаем их за норму. А в те годы, когда Гейзенберг предложил свой принцип, самые светлые умы человечества сошлись в нешуточной битве. Как мы уже говорили, Эйнштейну очень не нравились всякие неопределенности в физике. И в то время, когда Нильс Бор пытался создать хоть какое-то подобие квантовой теории, Эйнштейн всячески изводил его провокационными вопросами. В 30-е годы Эйнштейн и два его единомышленника — Подольский и Розен — предложили так называемый ЭПР-парадокс (по первым буквам фамилий хитрых физиков), гипотетический эксперимент, который доказывал, что неопределенность Гейзенберга можно обойти. Те, кто немного разбирались в том, что происходит, набрали себе побольше попкорна и издалека, не вмешиваясь, наблюдали как физики троллят друг друга. Заголовки газет тех времен гласили: «Эйнштейн атакует квантовую теорию: Учёный и двое его коллег находят её „неполной“, хотя и „корректной“».
Рискнем упрощенно разобрать суть парадокса — вы же за этим читаете наши лекции? Допустим Гейзенберг немного прав, и мы почему-то не можем измерить импульс и координаты частицы одновременно. Но, кажется, у Эйнштейна есть лайфхак. Давайте возьмем частицу, которая собирается распадаться! После распада образуется две частицы: они разлетятся, получив некоторые общие характеристики. Такие частицы физики называют «запутанными» (запомните этот термин). Отбросив сложную матчасть, вспомним закон сохранения импульса из классической механики — суммарный импульс тел ДО равен суммарному импульсу ПОСЛЕ. Итак, «материнская» частица распадается, а ее части разлетаются, поделив импульс между собой, как бильярдные шары.
Дальше все логично и гениально: мы измеряем местоположение первой частицы, а импульс второй частицы. Таким образом, для первой частицы мы получаем и координаты (которые измерили непосредственно) и ее импульс (который просто посчитали на калькуляторе, отняв от первоначального значения импульс второй частицы).
Осознайте, насколько коварен был Эйнштейн! Да и поставить подобный эксперимент в те годы было затруднительно (коллайдеры еще не изобрели).
Озадаченный Нильс Бор практически на одной вере в чудеса заявил, что эксперимент будет некорректен, потому что частица приобретает конкретные значения импульса только после измерения, а не до распада, и не в момент распада. По сути это были все те же рассуждения, что и в предыдущей главе: скрытые параметры против генератора случайных чисел. Но, если прав Бор, то все это означает, что вторая частица «считывает», как первая определилась с импульсом, и тут же, мгновенно, присваивает себе значение, необходимое для закона сохранения. Вы там что, крышей двинулись, раз допускаете штуки, когда что-то взаимодействует быстрее скорости света? К тому же теоретически неважно на каком расстоянии находятся друг от друга запутанные частицы — хоть на противоположных краях галактик. Когда кто-то влияет на кого-то, будучи очень далеко, это называется нарушение принципа локальности. Короче говоря, Эйнштейн покрутил пальцем у виска, а Бор в ответ сделал умное лицо, и вопрос надолго повис в воздухе. Физики делали вид, что явление им неинтересно, а парадокс на то и парадокс, чтобы пугать студентов на экзаменах.
Через 30 лет, когда Бор и Эйнштейн покинули наш грешный мир, так и не договорившись, один физик по имени Белл надумал специальные уравнения, с помощью которых можно было бы проверить, кто был прав в споре. Его уравнения, известные как неравенства Белла, могли прояснить, есть ли скрытые параметры в поведении волновой функции или там воистину рэндомные процессы. А еще чуть более 20 лет спустя (в 1982 году) французские инженеры сумели поставить эксперимент, в котором неравенства Белла проверили на настоящих запутанных частицах.
Опять же в рамках нашего поверхностного повествования мы не в силах рассказать о неравенствах Белла подробно, но гарантируем, что в сети есть несколько отличных попыток их разжевать. Мы же попробуем парой абзацев объяснить суть эксперимента, вызвав у вас легкую бессонницу, а не глубокую экзистенциальную депрессию.
У частиц есть такая характеристика как спин. Вообще этот термин очень любят фрики-лжеученые всех мастей. Трансмодификацией (не знаем, что это) спина объясняется любая ересь и несостыковка в псевдотеориях и гипотезах от лучших, да и худших, умов альтернативной «науки». Поэтому по ходу повествования, а также чтобы оградить читателей от попадания на удочку мошенников, нам придется кое-что прояснить о спине.