(это число положительное и рациональное, но не всегда натуральное, ведь среди чисел а0, a1,..., an-1, могут быть отрицательные). Заметим, что это число есть несократимая дробь, поскольку простые множители, входящие в разложения числителя и знаменателя, различны. Заметим также, что две
- 18 -
несократимые дроби с положительными числителями и знаменателями равны тогда и только тогда, когда и их числители равны, и их знаменатели равны.
Рассмотрим теперь сквозное отображение:
Поскольку разным алгебраическим числам мы поставили в соответствие разные наборы целых чисел, а разным наборам — разные рациональные числа, то мы, таким образом, установили взаимно однозначное соответствие между множеством А и некоторым подмножеством Q. Поэтому множество алгебраических чисел счётно.
Так как множество действительных чисел несчётно, то мы доказали существование неалгебраических чисел.
Однако теорема существования не указывает как определить, является ли данное число алгебраическим. А этот вопрос иногда является весьма важным для математики.
Квадратура круга
В 1882 году немецкий математик Линдеман* доказал, что число π трансцендентно. Из этого сразу следует невозможность решения одной из знаменитых задач древности.
Этих задач было три: об удвоении куба, о трисекции угла и о квадратуре круга. Их пытались решить ещё математики Древней Греции.
Задача о квадратуре круга. На плоскости имеется круг. При помощи циркуля и линейки построить квадрат, площадь которого равна площади этого круга.
Пусть круг имеет радиус 1, т. е. задан отрезок длины 1. Площадь этого круга равна π, поэтому построение искомого квадрата сводится к построению отрезка длины √π.
--------------------
* Карл Луис Фердинанд Линдеман (1852-1939).
- 19 -
Далее воспользуемся известным геометрическим фактом: если задан отрезок длины 1, то с помощью циркуля и линейки можно построить только такие отрезки, длины которых суть числа очень специального вида. А именно, эти числа могут быть получены из рациональных чисел с помощью операций извлечения квадратного корня, а также сложения и умножения.
Но все такие числа (это нетрудно доказать) являются алгебраическими, т. е. для каждого из них можно построить многочлен с целыми коэффициентами, корнем которого оно является.
Поскольку число π трансцендентно, то и √π трансцендентно. Поэтому построить отрезок длины √π при помощи циркуля и линейки невозможно.
Вы видите, как решение задачи теории чисел — о трансцендентности числа — влечёт решение геометрической задачи. Это ещё один яркий пример тесной связи между различными областями математики.
Формулировка проблемы
Седьмая проблема Гильберта формулируется следующим образом:
Пусть a — положительное алгебраическое число, не равное 1, b — иррациональное алгебраическое число.
Доказать, что ab есть число трансцендентное.
В 1934 году советский математик Гельфонд* и чуть позже немецкий математик Шнайдер** доказали справедливость этого утверждения, и таким образом, эта проблема была решена.
-------------------
* Александр Осипович Гельфонд (1906-1968).
** Теодор Шнайдер (р. 1911).
- 20 -
Одна теорема существования
Когда-то, на заре своего существования, журнал «Квант» предложил своим читателям следующую задачу:
Пусть a и b — иррациональные числа. Может ли число ab быть рациональным?
Конечно, с использованием седьмой проблемы Гильберта эту задачу решить нетрудно. В самом деле, число √2√2 —трансцендентное (поскольку √2 — алгебраическое иррациональное число). Но все рациональные числа являются алгебраическими, поэтому √2√2 — иррациональное. С другой стороны,
(√2√2)√2= √2√2 · √2 = √22 = 2.
Итак, мы просто предъявили такие числа: а = √2√2, b = √2. Однако эта задача может быть решена и без каких- либо ссылок на результат Гельфонда. Среди читателей нашёлся школьник, который не знал, что такое седьмая проблема Гильберта, но прислал поразительно красивое решение.
Он рассуждал так: «Рассмотрим число √2√2. Если это число рациональное, то задача решена, такие а и b найдены. Если же оно иррациональное, то возьмём а = √2√2 , b = √2, и ab = (√2√2)√2 = 2».