Выбрать главу

Знаки препинания при обособленных определениях. Обособление деепричастий и деепричастных оборотов. Обособление обстоятельств, выраженных существительными в косвенных падежах с предлогами. Обособление оборотов со значением включения, исключения, замещения.

Обособление уточняющих и пояснительных членов предложения.

Знаки препинания при вводных словах, сочетания слов во вводных предложениях. Вставные конструкции.

Знаки препинания при обращении.

Знаки препинания при междометиях, утвердительных, отрицательных и вопросительно-восклицательных словах.

Знаки препинания в сложносочиненном предложении.

Знаки препинания в сложноподчиненном предложении с одним придаточным. Знаки препинания в сложноподчиненном предложении с несколькими придаточными. Знаки препинания в сложноподчиненном предложении при сочетании союзов. Точка с запятой, тире, запятая и тире, двоеточие в сложноподчиненном предложении.

Знаки препинания в бессоюзных предложениях.

Знаки препинания в предложениях со сравнительными союзами.

Знаки препинания при прямой речи.

ПРОГРАММА ПО МАТЕМАТИКЕ

Настоящая программа состоит из трех разделов.

В первом разделе перечислены основные математические понятия, которыми должен владеть поступающий как на устном, так и на письменном экзамене.

Второй раздел представляет собой перечень вопросов теоретической части устного экзамена. При подготовке к письменному экзамену целесообразно познакомиться с формулировками утверждений из этого раздела.

В третьем разделе указано, какие навыки и умения требуются от поступающего на письменном и устном экзаменах.

Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств этого курса, включая и начала анализа.

Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающим, но при условии, что он способен их пояснять и доказывать.

В связи с обилием учебников и регулярным их переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения.

I. Основные математические понятия и факты

Арифметика, алгебра и начала анализа

Натуральные числа (N). Простые и составные числа. Делитель, кратное. Наибольший общий делитель, наименьшее общее кратное.

Признаки делимости на 2, 3, 5, 9, 10.

Целые числа (Z). Рациональные числа (Q), их сложение, вычитание, умножение и деление. Сравнение рациональных чисел.

Действительные числа (R), их представление в виде десятичных дробей.

Изображение чисел на прямой. Модуль действительного числа, его геометрический смысл.

Числовые выражения. Выражения с переменными. Формулы сокращенного умножения.

Степень с натуральным и рациональным показателем. Арифметический корень.

Логарифмы, их свойства.

Одночлен и многочлен.

Многочлен с одной переменной. Корень многочлена на примере квадратного трехчлена.

Понятие функции. Способы задания функции. Область определения. Множество значений функции.

График функции. Возрастание и убывание функции; периодичность, четность, нечетность.

Достаточное условие возрастания (убывания) функции на промежутке. Понятие экстремума функции. Необходимое условие экстремума функции (теорема Ферма). Достаточное условие экстремума. Наибольшее и наименьшее значение функции на промежутке.

Определение и основные свойства функций: линейной, квадратичной: у = aх2 + Ьх + с, степенной: у = axn (n є N), у — k/x, показательной: у = ах, а > 0, логарифмической, тригонометрических функций: у = sin х; у = cos х; у = tg x, арифметического корня: у = .

Уравнение. Корни уравнения. Понятие о равносильных уравнениях.

Неравенства. Решения неравенства. Понятие о равносильных неравенствах.

Система уравнений и неравенств. Решения системы.

Арифметическая и геометрическая прогрессия. Формула n-го члена и суммы первых n членов арифметической прогрессии. Формула n-го члена и суммы первых n членов геометрической прогрессии.

Синус и косинус суммы и разности двух аргументов (формулы).

Преобразование в произведение сумм sin ± sin ; cos ± cos .

Определение производной. Ее физический и геометрический смысл.

Производные функций у = sin х; у = cos х; у = tg x; у = ах; у = хn (n є Z).

Геометрия

Прямая, луч, отрезок, ломаная; длина отрезка. Угол, величина утла. Вертикальные и смежные углы. Окружность, круг. Параллельные прямые.

Примеры преобразования фигур, виды симметрии. Преобразование подобия и его свойства.

Векторы. Операции над векторами.

Многоугольник, его вершины, стороны, диагонали.

Треугольник. Его медиана, биссектриса, высота. Виды треугольников. Соотношения между сторонами и углами прямоугольного треугольника.

Четырехугольник: параллелограмм, прямоугольник, ромб, квадрат, трапеция.

Окружность и круг. Центр, хорда, диаметр, радиус. Касательная к окружности. Дуга окружности. Сектор.

Центральные и вписанные углы.

Формулы площади: треугольника, прямоугольника, параллелограмма, ромба, квадрата, трапеции.

Длина окружности и длина дуги окружности. Радианная мера угла. Площадь круга и площадь сектора.

Подобие. Подобные фигуры. Отношение площадей подобных фигур.

Плоскость. Параллельные и пересекающиеся плоскости.

Параллельность прямой и плоскости.

Угол прямой с плоскостью. Перпендикуляр к плоскости.

Двугранные углы. Линейный угол двугранного угла. Перпендикулярность двух плоскостей.

Многогранники. Их вершины, ребра, грани, диагонали. Прямая и наклонная призмы; пирамиды. Правильная призма и правильная пирамида. Параллелепипеды, их виды.

Фигуры вращения: цилиндр, конус, сфера, шар. Центр, диаметр, радиус сферы и шара. Плоскость, касательная к сфере.

Формулы площади поверхности и объема призмы.

Формулы площади поверхности и объема пирамиды.

Формулы площади поверхности и объема цилиндра.

Формулы площади поверхности и объема конуса.

Формулы объема шара.

Формулы площади сферы.

II. Основные формулы и теоремы

Алгебра и начала анализа

Свойства функции у = kx + b и ее график. Свойства

функции у = k/x и ее график.

Свойства функции у = ах2 + Ьх + с и ее график.

Формула корней квадратного уравнения.

Разложение квадратного трехчлена на линейные множители.

Свойства числовых неравенств.

Логарифм произведения, степени, частного.

Определение и свойства функций у = sin х и у = cos x и их графики.

Определение и свойства функции у = tg x и ее график.

Решение уравнений вида sin x = a, cos x = a, tg x = а.

Формулы приведения.

Зависимости между тригонометрическими функциями одного и того же аргумента.

Тригонометрические функции двойного аргумента.

Производная суммы двух функций.

Геометрия

Свойства равнобедренного треугольника.