Программирование этой игры очень просто. Желаю успеха.
* Игра 8. Шадок у гиби.
«У шадоков ситуация удовлетворительна. Испытания ракет продолжаются, постоянно кончаясь неудачами.
Дело здесь в одном из основных принципов шадокской логики: «Нет ничего, что бы непрерывно продолжалось и не кончилось успехом». Или, в других выражениях: «Чем больше неудач, тем больше шансов, что оно заработает». Их ракета еще несовершенна, но они вычислили, что у них есть по крайней мере один шанс из миллиона, что она заработает… И они торопятся поскорее осуществить 999999 первых неудачных опытов, чтобы быть уверенными, что миллионная заработает». (Жак Руксель. Великолепие навыворот. Париж, издательство Грассе.)
Великий колдун сказал, что ракеты терпят неудачу потому, что не хватает транзисторов в системах безопасности. Но у гиби транзисторы собирают с растений, произрастающих на огородах. Решено послать одного из шадоков на планету гиби искать транзисторы. Гиби, очень умные благодаря своим шляпам, быстро проникли в планы шадоков и решили позабавиться. Они позволили шадоку забраться в один из их огородов, но окружили его со всех сторон, и всякий раз, когда растение расцветает и дает транзистор, они мчатся, чтобы собрать урожай прежде шадока.
Вот вам тема игры. Как и в предыдущих играх, я предлагаю здесь версию, которую я реализовал на своем микрокомпьютере, Вы можете подогнать параметры в зависимости от возможностей вашей машина, а также в зависимости от желаемой трудности игры и шансов на успех. Было бы благоразумно. В первых версиях из осторожности стоит считывать все параметры до начала каждой партии. Вы сможете также сделать несколько попыток, чтобы добиться удовлетворительного расположения всех персонажей в огороде. Не придерживайтесь рабски сделанных ниже предложений.
В начале игры компьютер воспроизводит образ огорода] где появляются: гиби, обозначенные буквами Г; цветы с транзисторами, обозначенные цифрой, показывающий число транзисторов, которые можно собрать с этого цветка (есть цветки с одним транзистором, наименее продуктивные, и цветки с девятью транзисторами, наиболее продуктивные); шадок, представленный крестиком (×); пустые места, обозначенные точкой. Вот возможная комбинация. В ней 12 строк по 20 полей, с 15 гиби и 20 цветками. Все их значения указаны. Шадок имеет право на 40 ходов, чтобы собрать 100 транзисторов. Компьютер постоянно сообщает число оставшихся ходов и число уже собранных транзисторов.
На своем ходе шадок может переместиться па одну клетку в любом направлении. Я выбрал определение перемещения с помощью 0, 1 и 4 букв: В — для верха, Н — для низа, Л — для левой и П — для правой стороны. Если ответ пуст, то шадок не шевелится. Если ответ П, то нужно сделать один шаг вправо на той же строке. Если ответ ВЛ (или ЛВ, порядок не важен), то шадок перемещается на 1 шаг но направлению диагонали вверх и влево.
Если при движении шадок оказывается на поле, запятой цифрой, то эта цифра исчезает из игры и ее значение прибавляется к сумме, набранной игроком. Случайным образом выбирается новая цифра и располагается на свободном игровом поле.
Ну, а теперь — о путешествиях гиби. Каждый гиби перемещается на один шаг по строке, столбцу или диагонали к ближайшей к нему цифре. Это правило может привести двух гиби на одно и то же поле. Есть много способов разрешить проблему этих столкновений: например, если ноле назначения какого-либо гиби не является ни точкой, ни цифрой, то перемещение на него не осуществляется. Это проще всего. Если при своем перемещении гиби прибывает на поле, обозначенное цифрой, то эта цифра исчезает из игры. Когда все гиби перемещены, нужно случайным образом раздобыть столько же цифр, сколько было упразднено, и случайным образом расположить их на местах, обозначенных точками.
Игра кончается, либо когда шадок приобретает свои 100 транзисторов, либо когда число ходов, предоставленных ему, оказывается исчерпанным.
Эта игра включает намного более случайных элементов, чем предыдущая. Но можно играть с большей или меньшей ловкостью. На рис. 3 шадок может собрать урожай с одной из трех следующих цифр: с 3 — выше от него в том же столбце (этой цифре угрожает гиби, по шадок, играя первым, достигает ее раньше); с 5 — ниже и правее его (и ей тоже угрожает гиби, но шадок его опередит) с 9 — ниже и левее (эта цифра дальше, нужно три хода, чтобы достичь ее, вместо двух для предыдущих цифр, но нет ни одного гиби поблизости). Цифра 9 дает наибольшее число очков, но обходится в три хода. Если так и сделать, то уже ни одной цифры поблизости не окажется. Цифра 5 находится в углу, наводненном гиби. Как будто у нас нет особых оснований выбрать в качестве следующего хода что-либо другое. Именно 3 оказывается наилучшим выбором, потому что и 5, и 7, и 9 не слишком близко, В этом углу гиби есть, но там и с цифрами неплохо, так что их перемещения более или менее предсказуемы (если сумеете, сделайте, чтобы это было в точности так). Итак, у вас есть возможность выбирать каждый отдельный ход наилучший образом, но вы не можете проводить вычисления слишком далеко: вы не знаете, как будут противодействовать гиби, а их достаточно много для того, чтобы при каждом ходе какие-то цветы исчезали, позволяя другим расцвести.