Выбрать главу

Почему не разделить интервал (0, 1) на 6 частей?

Или еще по-другому: почему бы не умножить выше случайное число на 6. Тогда оно окажется в интервале (0, 6), исключая 6. Если вы возьмете целую часть результата, то вы получите целое число от 0 до 5, включая границы, с равными вероятностями для каждого числа… Завершить следует вам, я уже сказал слишком много!

Игра 1.

Если вы знаете, как сделать предыдущее упражнение, то это для вас уже не задача. Нужно подделать кости, иначе говоря — сделать так, чтобы одна из граней выпадала чаще остальных. Это должно означать, таким образом, что вместо того, чтобы делить интервал (0, 1) на 6 равных Частей, нужно взять 5 частей равных между собой, а шестую побольше. Легко! Наиболее простое решение состоит в умножении случайного числа на целое, большее 6, и в присвоении новых значений грани,; которую вы решили предпочесть.

Элементарно, мой дорогой Ватсон!

Игра 2.

Х.-К. Байи упростил задачу, указав две возможные стратегии:

— бросать кость до тех пор, пока не будет достигнута некоторая намеченная заранее сумма (по крайней мере если игрок не будет остановлен по дороге выбрасыванием единицы);

— бросать кость определенное число раз, намеченное заранее.

В первом случае предположим, что уже имеющаяся у вас сумма равна n и что вы собираетесь осуществить еще одно бросание. У вас есть один шанс из 6 получить каждое из следующих шести чисел: 0, n + 2, n + 3, n + 4, n + 5, n + 6. Если вероятный выигрыш не увеличивает полного выигрыша (если среднее из этих чисел меньше n), то играть не следует. Вы должны получить n = 20.

Если вы бросаете кость 6 раз, то — поскольку все грани имеют равные шансы выпасть — вы должны проиграть. Это не слишком строгое рассуждение, но короткое… Если единица вам не выпала, то у вас один шанс из пяти получить числа от 2 до 6, что дает в среднем 4. За 5 ходов получаем 20. Это — еще один способ получить оценку для числа ходов.

Но есть и другие возможные стратегии. Вы можете, в частности, решить останавливаться в зависимости от того, какое из двух событий наступает первым: сумма, большая 19, или число ходов, равное 5.

Используйте ваш компьютер, чтобы произвести соответствующие опыты.

Если вы хотите взглянуть на это с точки зрения искусственного интеллекта, то вы можете также снабдить вашу программу механизмом самообучения. Вы помещаете в вашу программу три упомянутые выше стратегии. Розыгрыш определяет случайным образом ту, которая будет использована в каждой из партий. Вначале все три стратегии имеют равные вероятности. Если выбранная стратегия выигрывает, то вероятность ее применения увеличивается. Если она проигрывает, то ее вероятность уменьшается. Чем больше вы играете, тем чаще компьютер должен выигрывать. После очень большого числа партий полученные частоты применения стратегий скажут вам, какая из них является наилучшей.

Головоломка 1.

Это — нетрудная программа, разве что вы не взяли па себя заботу четко сформулировать задачу. Последовательность целых чисел, порождаемая этой программой, является так называемой возвратной последовательностью, каждый член которой полностью определяется значением предыдущего члена:

ui = f(ui−1),

Сказать, что последовательность ui становится периодической — то же, что сказать, что существует некоторое p, для которого

ui+p = ui

для достаточно больших i. Но если это выполняется для данного i, то

ui+p+1 = f(ui+p) = f(ui) = ui+1

и, следовательно, uj+p = uj для любого j, большего i. Пусть r — наименьший из индексов, для которых ur+p = ur.

От вас не требуют найти число r, нужно найти только число p. Можно предложить два решения:

— если i — достаточно большое число, кратное p, то u2i = ui;

— выберите исходное значение d и длину интервала h. Для любого i от d + 1 до d + h посмотрите, не равно ли соответствующее значение u числу ud. Если равно, то вы нашли период и все закончилось. Если же никакого равенства не получается, то либо d меньше, чем r, либо h меньше p, либо и то, и другое. Попытайтесь сделать то же еще раз с бо́льшими d и h.