— одна из них содержит список кур, уже взятых при исследовании данного пути (это — последовательность букв взятых кур),
— вторая цепочка содержит дуплеты: положение в игре и рассматриваемое направление (мы осуществляем взятие, исходя из положения x и двигаясь в направлении, обозначенном через i).
Находясь в положении x и в направлении i я смотрю, есть ли кура на поле x + d[i]. Если ее нет, то в этом направлении никакое взятие невозможно. Если же такая кура есть, то я смотрю, не содержится ли буква этой куры в цепочке уже взятых кур. Если содержится, то в этом направлении ничего не сделаешь. Если же эта кура еще не взята, то я проверяю, действительно ли поле x + 2 * d[i] содержит именно точку — в противном случае никакого взятия нет. Действуя таким образом, я не сталкиваюсь ни с какими трудностями на краях (там есть предохранительная строка, и она не содержит ни одной куры).
Если взятие оказывается возможным, я присоединяю его характеристики к обеим цепочкам, продвигаюсь на новую позицию и возобновляю изучение взятий, исходя из этого нового положения. Я не изменяю состояния игры, за исключением того, которое относится к начальному полю отправления лиса (на этом поле лис может оказаться снова. Напротив, из соображений четности мы не можем прийти на поле, занимаемое какой-либо из взятых кур).
Когда оказывается, что мы достигли поля, исходя из которого уже никакое дальнейшее взятие невозможно, я сравниваю длину цепочки взятых кур с наиболее длинной уже сохраняемой цепочкой и выбираю лучшую из них (нужно смотреть и на цепочку дублетов, чтобы осуществить взятие, обновляя состояние игры, как только наиболее длинное взятие будет определено). Затем я отменяю последнее взятие (совершенное в этих двух цепочках) и перехожу к следующему направлению, исходя из последнего положения. Никакой проблемы с временем вычислений на моем микрокомпьютере не возникает, даже наоборот. Часто нужно добавлять замедляющий цикл, чтобы предоставить игроку время увидеть, что происходит…
4. Игры со стратегией
Игра 19.
И здесь тоже решение неединственно. Вот одно из них, хорошо приспособленное к используемой мною машине, на которой деления на 2 не бесплатны (на мой взгляд, выполняются слишком долго). Нам известна верхняя граница числа спичек в каждой кучке, определяемая принятым вами правилом (я взял 4 кучки с по крайней мере 16 спичками). Я рассматриваю двоичные записи числа спичек в кучке, начиная слева. Я задаюсь числом p = 8. Если число больше или равно 8, то оно содержит 1 в крайнем левом из возможных положений. Тогда я вычитаю 8 из этого числа и перехожу к p = 4.
Сначала я определяю крайнюю левую цифру для числа спичек во всех четырех кучках. Из них я удерживаю только две вещи: четность этого числа (переменная q, вначале равная 0, изменяется на 1 — q при каждой встрече с единицей; результат нечетен, если в конце получается q = 1); номер последней встреченной кучки, у которой в данном положении встретилась единица. Я исследую таким образом все положения слева направо, пока не встречаю положение, для которого сумма единиц, стоящих в этом положении, нечетна. Тогда я знаю кучку (ту, номер которой был удержан в памяти), у которой в этом положении стоит именно единица. Я убираю из этой кучки желаемое число спичек, чтобы эта единица исчезла (8, если сейчас изучается крайнее левое положение).
Тогда я аналогичным образом исследую оставшиеся положения, за исключением того, что я больше не трогаю номера кучек, из которых я уже брал спички. Для каждой оставшейся позиции, вплоть до крайней правой, я отыскиваю единицы и, если число единиц нечетно, то я изменяю число спичек в выбранной кучке. Чтобы узнать, нужно ли добавить или уменьшить, я сохраняю их число перед изменением в цикле. Если оно больше р, я вычитаю из него р, а если меньше, то я р добавляю (я ставлю 0 вместо 1 и 1 вместо 0). Все это — очень быстрое вычисление, но оно требует немного больше строк в программе. Так вы легко достигнете цели.
Игра 20.
Я ничего не добавляю, потому что эта игра является вариантом нимской игры. На каждой строке есть пустые поля, играющие ту же роль, что и спички в кучках нимской игры. Единственная разница состоит в том, что игрок может отступать. Если вы можете достичь выигрывающей позиции (такой, что НИМ-сумма пустых полей между игроками на каждой строчке оказывается равной нулю) и если противник отступает одной из своих шашек, увеличивая число пустот на этой строке, то вы на столько же полей продвигаетесь вперед, восстанавливая таким образом предшествующую — и потому выигрывающую — ситуацию. Противник оказывается немного глубже вбитым в свой угол и приблизившимся к своей гибели. Если в какой-то момент все промежуточные пустые поля пропадут, то шашки оказываются рядом друг с другом, и ваш противник может только отступать. А вы за ним следуете…