Выбрать главу

Тогда можно использовать наше преобразование:

i := 1; р := 0;

ПОКА in ВЫПОЛНЯТЬ

  ПОКА in И а[i] = a[iр] ВЫПОЛНЯТЬ

    x := а[i]; р := р + 1; i := i + 1

  ВЕРНУТЬСЯ

  ПОКА in И а[i] ≠ a[iр] ВЫПОЛНЯТЬ

    i : = i + 1

  ВЕРНУТЬСЯ

ВЕРНУТЬСЯ

Первый цикл движется по таблице а, пока обнаруживается, что элементы равны между собой. Более точно, р и i изменяются одинаково, так что разность iр остается постоянной. Все элементы a[i] сравниваются с одним и тем же элементом, и величина x остается постоянной, равной этому элементу, на протяжении всего цикла.

Второй цикл изменяет i до тех пор, пока не обнаружится пара элементов, отстоящих на р + 1.

Уточним ситуацию выхода из первого внутреннего цикла. Мы собираемся найти конец равнины, которая лучше всех предыдущих, мы фиксируем ее длину р и ее значение х, a i обозначает первый элемент после этой равнины. Мы можем надеяться найти пару j, jр с

a[j] = a[jр]

только пока jр остается на равнине, которую мы собираемся пройти. Наименьшее соответствующее i значение j удовлетворяет условию jр = i, или j = i + р.

Следовательно, можно увеличивать i от р в обоих циклах, не меняя действия программы, что ускоряет ее работу.

Чтобы ускорить и первый внутренний цикл, мы присвоим переменной x ее значение перед циклом и сохраним ее начальное значение в j. Так как iр остается постоянным, то можно вычислить значение р также и после выхода из цикла. Начальные значения суть i = j и р = р0, а конечные значения i и р удовлетворяют соотношениям iр = jр0, откуда р = i + р0j:

i := 1; р := 0

ПОКА in ВЫПОЛНЯТЬ

x := а[i]; j := i

  ПОКА in И а[i] = x ВЫПОЛНЯТЬ

    i := i + 1

  ВЕРНУТЬСЯ

  р := i + рj; i := i + p

  ПОКА in И а[i] ≠ a[iр] ВЫПОЛНЯТЬ

    i := i + 1

  ВЕРНУТЬСЯ

ВЕРНУТЬСЯ

Вы можете получить эту программу непосредственно, минуя механизм преобразования программ. Но этот способ кажется мне требующим больших умственных усилий,

Может быть, это связано с ходом мыслей, который я приобрел, преподавая[30].

Головоломка 35.

Хорошенько учтите то, что вы знаете: обозначим через и таблицу, которая дает последние элементы наилучших возрастающих последовательностей для (всех возможных) длин от 1 до m.

Покажем сначала, что ui < ui+1. Предположим, что это не так: пусть существует такая последовательность длины i + 1, у которой последний элемент не больше ui. Так как эта последовательность возрастает, то ее предпоследний элемент меньше ui+1 и потому меньше ui. Тогда, удаляя последний элемент этой последовательности, мы получили бы последовательность длины i с последним членом, меньшим ui, что противоречило бы предположению, что ui — последний элемент последовательности длины i с наименьшим возможным последним элементом.

Рассмотрим теперь следующий элемент x нашего вектора. Разместим его в упорядоченной таблице u. Может случиться, что x > um. Тогда элемент x можно присоединить к концу последовательности длины m; тем самым получилась бы (впервые) возрастающая последовательность длины m + 1, которая вследствие своей единственности была бы оптимальна.

вернуться

30

Прочтя весь этот ужас, я решил провести решение, основанное на методике из курса программирования механико-математического факультета МГУ.

Каждой последовательности чисел {a1, а2, …, ai} (i ≥ 1) сопоставим число lmax, равное максимальной длине равнинного участка этой последовательности. Очевидно, что lmax ({a1}) = 1. Пусть мы знаем lmax ({a1, а2, …, ai}). Как вычислить величину lmax ({a1, …, ai, ai+1})? Добавление элемента ai+1 к последовательности {a1, а2, …, ai} не затрагивает равнинных участков этой последовательности, кроме, быть может, последнего. Если ai+1 = ai, то длина этого последнего участка — назовем ее llast ({a1, …, ai}) — увеличивается на единицу. Если величина llast ({a1, …, ai, ai+1}) окажется при этом больше величины lmax ({a1, а2, …, ai}), то это значит, что последний равнинный участок в последовательности {a1, а2, …, ai, ai+1} по крайней мере на 1 длиннее всех предыдущих, и, значит, lmax ({a1, а2, …, ai, ai+1}) = llast ({a1, а2, …, ai, ai+1}).

Введем четыре величины:

i — число рассмотренных членов последовательности,

lmax — максимальная длина равнинного участка для рассмотренных элементов,

llast — длина последнего равнинного участка для рассмотренных элементов,

xlast — последний рассмотренный элемент последовательности (он равен а[i]).

Теперь приведем без пояснений программу, которая вычисляет lmax ({a1, …, an}) по индукции.

i := 1; lmax := 1; llast := 1; xlast := a[1]

нц пока i < n

x := a[i + 1]

  если x = xlast то llast := llast + 1

  иначе llast := 1 кесли

  если llast > lmax то lmax := llast кесли

  xlast := x

i := i + 1

кц

вывод lmax

Подробнее об этой индуктивной методике можно прочитать в книге: А. Г. Кушниренко, Г. В. Лебедев. Программирование для математиков. — М.: Наука, 1988. — Примеч. ред.