Тогда можно использовать наше преобразование:
i := 1; р := 0;
ПОКА i ≤ n ВЫПОЛНЯТЬ
ПОКА i ≤ n И а[i] = a[i − р] ВЫПОЛНЯТЬ
x := а[i]; р := р + 1; i := i + 1
ВЕРНУТЬСЯ
ПОКА i ≤ n И а[i] ≠ a[i − р] ВЫПОЛНЯТЬ
i : = i + 1
ВЕРНУТЬСЯ
ВЕРНУТЬСЯ
Первый цикл движется по таблице а, пока обнаруживается, что элементы равны между собой. Более точно, р и i изменяются одинаково, так что разность i − р остается постоянной. Все элементы a[i] сравниваются с одним и тем же элементом, и величина x остается постоянной, равной этому элементу, на протяжении всего цикла.
Второй цикл изменяет i до тех пор, пока не обнаружится пара элементов, отстоящих на р + 1.
Уточним ситуацию выхода из первого внутреннего цикла. Мы собираемся найти конец равнины, которая лучше всех предыдущих, мы фиксируем ее длину р и ее значение х, a i обозначает первый элемент после этой равнины. Мы можем надеяться найти пару j, j − р с
a[j] = a[j − р]
только пока j − р остается на равнине, которую мы собираемся пройти. Наименьшее соответствующее i значение j удовлетворяет условию j − р = i, или j = i + р.
Следовательно, можно увеличивать i от р в обоих циклах, не меняя действия программы, что ускоряет ее работу.
Чтобы ускорить и первый внутренний цикл, мы присвоим переменной x ее значение перед циклом и сохраним ее начальное значение в j. Так как i − р остается постоянным, то можно вычислить значение р также и после выхода из цикла. Начальные значения суть i = j и р = р0, а конечные значения i и р удовлетворяют соотношениям i − р = j − р0, откуда р = i + р0 − j:
i := 1; р := 0
ПОКА i ≤ n ВЫПОЛНЯТЬ
x := а[i]; j := i
ПОКА i ≤ n И а[i] = x ВЫПОЛНЯТЬ
i := i + 1
ВЕРНУТЬСЯ
р := i + р − j; i := i + p
ПОКА i ≤ n И а[i] ≠ a[i − р] ВЫПОЛНЯТЬ
i := i + 1
ВЕРНУТЬСЯ
ВЕРНУТЬСЯ
Вы можете получить эту программу непосредственно, минуя механизм преобразования программ. Но этот способ кажется мне требующим больших умственных усилий,
Может быть, это связано с ходом мыслей, который я приобрел, преподавая[30].
Головоломка 35.
Хорошенько учтите то, что вы знаете: обозначим через и таблицу, которая дает последние элементы наилучших возрастающих последовательностей для (всех возможных) длин от 1 до m.
Покажем сначала, что ui < ui+1. Предположим, что это не так: пусть существует такая последовательность длины i + 1, у которой последний элемент не больше ui. Так как эта последовательность возрастает, то ее предпоследний элемент меньше ui+1 и потому меньше ui. Тогда, удаляя последний элемент этой последовательности, мы получили бы последовательность длины i с последним членом, меньшим ui, что противоречило бы предположению, что ui — последний элемент последовательности длины i с наименьшим возможным последним элементом.
Рассмотрим теперь следующий элемент x нашего вектора. Разместим его в упорядоченной таблице u. Может случиться, что x > um. Тогда элемент x можно присоединить к концу последовательности длины m; тем самым получилась бы (впервые) возрастающая последовательность длины m + 1, которая вследствие своей единственности была бы оптимальна.
30
Прочтя весь этот ужас, я решил провести решение, основанное на методике из курса программирования механико-математического факультета МГУ.
Каждой последовательности чисел {
Введем четыре величины:
lmax — максимальная длина равнинного участка для рассмотренных элементов,
llast — длина последнего равнинного участка для рассмотренных элементов,
xlast — последний рассмотренный элемент последовательности (он равен а[i]).
Теперь приведем без пояснений программу, которая вычисляет lmax ({
нц пока
если
иначе llast := 1 кесли
если llast > lmax то lmax := llast кесли
xlast :=
кц
вывод lmax
Подробнее об этой индуктивной методике можно прочитать в книге: А. Г. Кушниренко, Г. В. Лебедев. Программирование для математиков. — М.: Наука, 1988. —